Organic Letters
Letter
2009, 351, 253. For a two-step synthesis of four diastereomers, see:
leaving groups; Shane Grosser and Zachary Dance for particle
characterization of the Cs2CO3; Bob Reamer for providing NMR
analytical assistance; and Wes Schafer and Becky Arvary for
providing other analytical assistance (Merck & Co., Inc., Rahway,
New Jersey, U.S.A.). We also thank Jin She, Yuhua Shi, Weifeng
Hu, Yunchun Dai, Honglin Ye, and Xianliang He for additional
experimental assistance (Shanghai SynTheAll Pharmaceutical
Co., Ltd.).
(b) Wolberg, M.; Hummel, W.; Muller, M. Chem. - Eur. J. 2001, 7, 4562.
̈
(15) For a review discussing enantiocomplementary enzymes, see:
Mugford, P. F.; Wagner, U. G.; Jiang, Y.; Faber, K.; Kazlauskas, R. J.
Angew. Chem., Int. Ed. 2008, 47, 8782.
(16) For a similar cyclization, see: Tan, L.; Yasuda, N.; Yoshikawa, N.;
Hartner, F. W.; Eng, K. K.; Leonard, W. R.; Tsay, F.-R.; Volante, R. P.;
Tillyer, R. D. J. Org. Chem. 2005, 70, 8027.
(17) Song, Z. J.; Zhao, M.; Frey, L.; Li, J.; Tan, L.; Chen, C. Y.;
Tschaen, D. M.; Tillyer, R.; Grabowski, E. J. J.; Volante, R.; Reider, P. J.;
Kato, Y.; Okada, S.; Nemoto, T.; Sato, H.; Akao, A.; Mase, T. Org. Lett.
2001, 3, 3357.
(18) This was rationalized with the aid of DFT calculations which
shows a substantially higher kinetic barrier (4−5 kcal/mol) to form
endo-12 than 12. See SI for transition state geometries and energies.
(19) (a) Wu, X.; Fors, B.; Buchwald, S. L. Angew. Chem., Int. Ed. 2011,
50, 9943. (b) Kataoka, N.; Shelby, Q.; Stambuli, J. P.; Hartwig, J. F. J.
Org. Chem. 2002, 67, 5553. (c) Maligres, P. E.; Li, J.; Krska, S. W.;
Schreier, J. D.; Raheem, I. T. Angew. Chem., Int. Ed. 2012, 51, 9071.
(20) For exmples in which Cs2CO3 particle size is critical to cross-
coupling reaction performance, see: (a) Betti, M.; Genesio, E.; Marconi,
G.; Coccone, S. S.; Wiedenau, P. Org. Process Res. Dev. 2014, 18, 699.
REFERENCES
■
(1) For a review on FFA targets, see: Ichimura, A.; Hasegawa, S.;
Kasubuchi, M.; Kimura, I. Front. Pharmacol. 2014, 5, 1.
(2) (a) Mancini, A. D.; Poitout, V. Trends Endocrinol. Metab. 2013, 24,
398. (b) Defossa, E.; Wagner, M. Bioorg. Med. Chem. Lett. 2014, 24,
2991.
(3) (a) Srivastava, A.; Yano, J.; Hirozane, Y.; Kefala, G.; Gruswitz, F.;
Snell, G.; Lane, W.; Ivetac, A.; Aertgeerts, K.; Nguyen, J.; Jennings, A.;
Okada, K. Nature 2014, 513, 124. (b) Kaku, K.; Enya, K.; Nakaya, R.;
Ohira, T.; Matsuno, R. Diabetes, Obes. Metab. 2015, 17, 675.
(4) For the Med-Chem patent on GPR40 preclinical candidates
including MK-8666, see: (a) Hagmann, W. K.; Nargund, R. P.; Blizzard,
T. A.; Josien, H.; Biju, P.; Plummer, C. W.; Dang, Q.; Li, B.; Lin, L. S.;
Cui, M., Antidiabetic tricyclic compounds. WO2014022528A1,
February 6, 2014. For previous GPR40 preclinical candidates developed
at Merck & Co., Inc., Kenilworth, NJ USA, see: (b) Tan, C. P.; Feng, Y.;
Zhou, Y.-P.; Eiermann, G. J.; Petrov, A.; Zhou, C.; Lin, S.; Salituro, G.;
Meinke, P.; Mosley, R.; Akiyama, T. E.; Einstein, M.; Kumar, S.; Berger,
J. P.; Mills, S. G.; Thornberry, N. A.; Yang, L.; Howard, A. D. Diabetes
2008, 57, 2211. (c) Zhou, C.; Tang, C.; Chang, E.; Ge, M.; Lin, S.; Cline,
E.; Tan, C. P.; Feng, Y.; Zhou, Y.-P.; Eiermann, G. J.; Petrov, A.; Salituro,
G.; Meinke, P.; Mosley, R.; Akiyama, T. E.; Einstein, M.; Kumar, S.;
Berger, J.; Howard, A. D.; Thornberry, N.; Mills, S. G.; Yang, L. Bioorg.
Med. Chem. Lett. 2010, 20, 1298.
(b) Meyers, C.; Maes, B. U. W.; Loones, K. T. J.; Bal, G.; Lemiere, G. L.
̀
F.; Dommisse, R. A. J. Org. Chem. 2004, 69, 6010.
(5) Goto, M.; Kajiwara, T.; Kondo, Y.; Konishi, T.; Maeda, H.; Sera,
M.; Yamano, M.; Yamasaki, S. Production Method of Optically Active
Dihydrobenzofuran Derivatives U.S. Patent 8,952,185, August 23, 2012.
(6) The use of AcOH was not required, but it was used to buffer
chloride, thereby attenuating its reactivity to prevent unsafe exotherms.
(7) For reviews on biocatalytic reductions, see: (a) Moore, J. C.;
Pollard, D. J.; Kosjek, B.; Devine, P. N. Acc. Chem. Res. 2007, 40, 1412.
(b) Groger, H.; Hummel, W.; Metzner, R. In Comprehensive Chirality;
̈
Carreira, E. M., Yamamoto, H., Eds.; 2012, 7, 181−215. (c) Hall, M.;
Bommarius, A. S. Chem. Rev. 2011, 111, 4088.
(8) For a general review on enzymatics DKR reactions, see:
(a) Applegate, G. A.; Berkowitz, D. B. Adv. Synth. Catal. 2015, 357,
1619. For examples of biocatalytic DKR reductions of diketones and
ketoesters, see: (b) Kalaitzakis, D.; Smonou, I. J. Org. Chem. 2010, 75,
8658. (c) Kalaitzakis, D.; Rozzell, J. D.; Kambourakis, S.; Smonou, I. Org.
Lett. 2005, 7, 4799. (d) Zhu, D.; Mukherjee, C.; Rozzell, J. D.;
Kambourakis, S.; Hua, L. Tetrahedron 2006, 62, 901. (e) Kosjek, B.;
Tellers, D. M.; Biba, M.; Farr, R.; Moore, J. C. Tetrahedron: Asymmetry
2006, 17, 2798.
(9) A recent publication has described a DKR reduction of an
unactivated ketone at near-neutral pH: Hanson, R. L.; Guo, Z.;
́
Gonzalez-Bobes, F.; Fenster, M. D. B.; Goswami, A. J. Mol. Catal. B:
Enzym. 2016, 133, 20.
(10) Akashi, M.; Arai, N.; Inoue, T.; Ohkuma, T. Adv. Synth. Catal.
2011, 353, 1955.
(11) Bornscheuer, U. T.; Huisman, G. W.; Kazlauskas, R. J.; Lutz, S.;
Moore, J. C.; Robins, K. Nature 2012, 485, 185.
(12) Calvin, S. J.; Mangan, D.; Miskelly, I.; Moody, T. S.; Stevenson, P.
J. Org. Process Res. Dev. 2012, 16, 82.
(13) For a study on reversibility with various ketones, see: Tewari, Y.
B.; Phinney, K. W.; Liebman, J. F. J. Chem. Thermodyn. 2006, 38, 388.
(14) To the best of our knowledge, this is the first example of the feat.
For an example with three out of four diastereomers using three different
KREDs, see: (a) Ludeke, S.; Richter, M.; Muller, M. Adv. Synth. Catal.
̈
̈
D
Org. Lett. XXXX, XXX, XXX−XXX