Organic Letters
Letter
obtained N-allyl aniline 5 undergoes oxidation to furnish
acrolein anil 7, subsequently cyclizing to furnish intermediate 9
under acidic conditions.10 Finally, the desired quinoline 3 was
generated through dehydrogenation of the dihydroquinoline 9.
The oxidative processes, i.e. 5 to 7 and 9 to 3, are accompanied
by reduction of azobenzene 1 to aniline 4, which ends up as
starting material for another quinoline molecule formation.
Although how aniline was initially generated is still not clear, com-
parison of the following two reactions may give us some indications
(eqs 10−11). Treatment of (E)-1,2-bis(2,4-dimethylphenyl)diazene
National Key Basic Research Program of China (973 program)
(2012CB933402).
REFERENCES
■
(1) (a) Evans, W. J.; Kozimor, S. A.; Ziller, J. W. Chem. Commun.
2005, 4681. (b) Warner, B. P.; Scott, B. L.; Burns, C. J. Angew. Chem.,
Int. Ed. 1998, 37, 959. (c) Tsai, Y.; Wang, P.; Chen, S.; Chen, J. J. Am.
Chem. Soc. 2007, 129, 8066. (d) Kaleta, K.; Arndt, P.; Beweries, T.;
Spannenberg, A.; Theilmann, O.; Rosenthal, U. Organometallics 2010,
29, 2604. (e) Milsmann, C.; Turner, Z. R.; Semproni, S. P.; Chirik, P.
J. Angew. Chem., Int. Ed. 2012, 51, 5386. (f) Cladis, D. P.; Kiernicki, J.
J.; Fanwick, P. E.; Bart, S. C. Chem. Commun. 2013, 49, 4169.
(2) (a) Schabel, T.; Belger, C.; Plietker, B. Org. Lett. 2013, 15, 2858.
(b) Jagadeesh, R. V.; Wienhofer, G.; Westerhaus, F. A.; Surkus, A.-E.;
̈
Junge, H.; Junge, K.; Beller, M. Chem. - Eur. J. 2011, 17, 14375. (c) Li,
B.; Xu, Z. J. Am. Chem. Soc. 2009, 131, 16380.
(3) (a) Spencer, A. J. Organomet. Chem. 1985, 295, 199. (b) Yan, X.;
Yi, X.; Xi, C. Org. Chem. Front. 2014, 1, 657. (c) Hong, G.; Mao, D.;
Zhu, X.; Wu, S.; Wang, L. Org. Chem. Front. 2015, 2, 985.
(4) (a) Michael, J. P. Nat. Prod. Rep. 2008, 25, 166. (b) Balasu-
bramanian, M.; Keay, J. G. In Comprehensive Heterocyclic Chemistry II;
McKillop, A. E., Katrizky, A. R., Rees, C. W., Scrivem, E. F. V., Eds.;
Elsevier: Oxford, 1996; Vol. 5, p 245. (c) Gorka, A. P.; de Dios, A.;
Roepe, P. D. J. Med. Chem. 2013, 56, 5231. (d) Kaur, K.; Jain, M.;
Reddy, R. P.; Jain, R. Eur. J. Med. Chem. 2010, 45, 3245.
(5) (a) Li, J. Name Reactions in Heterocyclic Chemistry; Wiley
Interscience: Chichester, 2004; p 375. (b) Yamashkin, S. A.;
Oreshkina, E. A. Chem. Heterocycl. Compd. 2006, 42, 701. (c) Zong,
R.; Zhou, H.; Thummel, R. P. J. Org. Chem. 2008, 73, 4334.
(d) Riesgo, E. C.; Jin, X.; Thummel, R. P. J. Org. Chem. 1996, 61, 3017.
(e) Wu, Y.; Liu, L.; Li, H.; Wang, D.; Chen, Y. J. Org. Chem. 2006, 71,
6592.
1p under the conditions without employing allyl bromide
did not afford any products and 1p remained (eq 10). When
1 equiv of hydrogen bromide (aqueous solution) was added
(eq 11), anilines 4p and 4q were observed by GC-MS (see
possibly involves a proton as a hydrogen source and Cu(I) as
an electron source. Aniline 4q could have been produced by
bromination of 4p with a combination of Br− and the
generated Cu(II).12 In the reaction with allyl bromide, we
believe it is possible that HBr may first be produced by
hydrolysis (with a trace amount of H2O in DCE) or pyrolysis
of allyl bromide. Then, a similar electron transfer and
proton transfer process results in the initial reduction of
azobenzene.
In summary, we have developed a copper-promoted reaction
of azobenzenes with allyl bromides via NN bond cleavage to
construct quinoline derivatives. The reaction conditions and the
scope of this process were examined. The procedure is simple,
the substrates are readily available, and no external oxidant is
needed for quinoline formation. Mechanistic studies indicated a
multistep domino reaction as a reasonable process. Further
investigations to elucidate the interesting initial reduction of
azobenzene are still in progress.
(6) (a) Cao, K.; Zhang, F. M.; Tu, Y. Q.; Zhuo, X. T.; Fan, C. A.
Chem. - Eur. J. 2009, 15, 6332. (b) Desrat, S.; van de Weghe, P. J. Org.
Chem. 2009, 74, 6728. (c) Kulkarni, A.; Torok, B. Green Chem. 2010,
̈
̈
12, 875. (d) Gao, G.; Niu, Y.; Yan, Z.; Wang, H.; Wang, G.; Shaukat,
A.; Liang, Y. J. Org. Chem. 2010, 75, 1305. (e) Basuli, F.; Aneetha, H.;
Huffman, J. C.; Mindiola, D. J. J. Am. Chem. Soc. 2005, 127, 17992.
(7) (a) Zhu, S.; Wu, L.; Huang, X. J. Org. Chem. 2013, 78, 9120.
(b) Wang, Y.; Chen, C.; Peng, J.; Li, M. Angew. Chem., Int. Ed. 2013,
52, 5323. (c) Wang, Y.; Chen, C.; Zhang, S.; Lou, Z.; Su, X.; Wen, L.;
Li, M. Org. Lett. 2013, 15, 4794. (d) Wang, Z.; Li, S.; Yu, B.; Wu, H.;
Wang, Y.; Sun, X. J. Org. Chem. 2012, 77, 8615.
(8) (a) Matsubara, Y.; Hirakawa, S.; Yamaguchi, Y.; Yoshida, Z.
Angew. Chem., Int. Ed. 2011, 50, 7670. (b) Korivi, R. P.; Cheng, C. H. J.
Org. Chem. 2006, 71, 7079. (c) Wang, Y.; Liao, Q.; Zhao, P.; Xi, C.
Adv. Synth. Catal. 2011, 353, 2659. (d) Li, L.; Jones, W. D. J. Am.
Chem. Soc. 2007, 129, 10707.
(9) (a) Liao, Q.; Yang, X.; Xi, C. J. Org. Chem. 2014, 79, 8507.
(b) Cai, S.; Chen, C.; Shao, P.; Xi, C. Org. Lett. 2014, 16, 3142.
(c) Zhao, P.; Yan, X.; Yin, H.; Xi, C. Org. Lett. 2014, 16, 1120.
(d) Liao, Q.; Zhang, L.; Li, S.; Xi, C. Org. Lett. 2011, 13, 228.
(e) Wang, F.; Cai, S.; Wang, Z.; Xi, C. Org. Lett. 2011, 13, 3202.
(f) Wang, F.; Cai, S.; Liao, Q.; Xi, C. J. Org. Chem. 2011, 76, 3174.
(g) You, W.; Yan, X.; Liao, Q.; Xi, C. Org. Lett. 2010, 12, 3930.
(h) Liao, Q.; Zhang, L.; Wang, F.; Li, S.; Xi, C. Eur. J. Org. Chem. 2010,
2010, 5426.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Full experiment procedure, spectra data, and NMR charts
for all new products (PDF)
(10) Eisch, J. J.; Dluzniewski, T. J. Org. Chem. 1989, 54, 1269.
(11) (a) Choi, H.; Doyle, M. P. Chem. Commun. 2007, 745.
(b) Yamaguchi, K.; Mizuno, N. Angew. Chem., Int. Ed. 2003, 42, 1480.
(12) Bhatt, S.; Nayak, S. K. Synth. Commun. 2007, 37, 1381.
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This work was supported by the National Natural Science
Foundation of China (21272132 and 21472106) and the
■
D
Org. Lett. XXXX, XXX, XXX−XXX