10.1002/chem.202102269
Chemistry - A European Journal
RESEARCH ARTICLE
Kato, Y. Serizawa, D. Sakamaki, S. Seki, Y. Miyake, H. Shinokubo,
Chem. Commun. 2015, 51, 16944; e) Y. Nagata, S. Kato, Y. Miyake, H.
Shinokubo, Org. Lett. 2017, 19, 2718; f) Y. Matsuo, F. Chen, K. Kise, T.
Tanaka, A. Osuka, Chem. Sci. 2019, 10, 11006; g) H. Murase, Y. Nagata,
S. Akahori, H. Shinokubo, Y. Miyake, Chem. Asian J. 2020, 15, 3873; h)
B. Lousen, S. K. Pedersen, P. Bols, K. H. Hansen, M. R. Pedersen, O.
Hammerich, S. Bondarchuk, B. Minaev, G. V. Baryshnikov, H. Ågren, M.
Pittelkow, Chem. Eur. J. 2020, 26, 4935; i) Y. Matsuo, T. Tanaka, A.
Osuka, Chem. Eur. J. 2020, 26, 8144.
Rondin, D. Schollmeyer, J.-S. Lauret, K. Müllen, A. Narita, J. Am. Chem.
Soc. 2020, 142, 14814; k) Z. Qiu, C.-W. Ju, L. Frédéric, Y. Hu, D.
Schollmeyer, G. Pieters, K. Müllen, A. Narita, J. Am. Chem. Soc. 2021,
143, 4661; l) G. Li, T. Matsuno, Y. Han, S. Wu, Y. Zou, Q. Jiang, H. Isobe,
J. Wu, Angew. Chem. Int. Ed. 2021, 60, 10326; Angew. Chem. 2021,
133, 10414.
[11] a) C. Maeda, T. Todaka, T. Ema, Org. Lett. 2015, 17, 3090; b) C. Maeda,
T. Todaka, T. Ueda, T. Ema, Chem. Eur. J. 2016, 22, 7508; c) C. Maeda,
K. Nagahata, T. Ema, Org. Biomol. Chem. 2017, 15, 7783; d) C. Maeda,
T. Todaka, T. Ueda, T. Ema, Org. Biomol. Chem. 2017, 15, 9283; e) C.
Maeda, K. Nagahata, K. Takaishi, T. Ema, Chem. Commun. 2019, 55,
3136; f) C. Maeda, K. Suka, K. Nagahata, K. Takaishi, T. Ema, Chem.
Eur. J. 2020, 26, 4261; g) C. Maeda, K. Nagahata, T. Shirakawa, T. Ema,
Angew. Chem. Int. Ed. 2020, 59, 7813; Angew. Chem. 2020, 132, 7887;
h) C. Maeda, S. Nomoto, K. Takaishi, T. Ema, Chem. Eur. J. 2020, 26,
13016.
[5]
a) K. Y. Chernichenko, V. V. Sumerin, R. V. Shpanchenko, E. S.
Balenkova, V. G. Nenajdenko, Angew. Chem. Int. Ed. 2006, 45, 7367;
Angew. Chem. 2006, 118, 7527; b) A. Dadvand, F. Cicoira, K. Y.
Chernichenko, E. S. Balenkova, R. M. Osuna, F. Rosei, V. G.
Nenajdenko, D. F. Perepichka, Chem. Commun. 2008, 5354; c) Y.
Serizawa, S. Akahori, S. Kato, H. Sakai, T. Hasobe, Y. Miyake, H.
Shinokubo, Chem. Eur. J. 2017, 23, 6948; d) S. Akahori, H. Sakai, T.
Hasobe, H. Shinokubo, Y. Miyake, Org. Lett. 2018, 20, 304; e) L. Li, S.
Zhao, B. Li, L. Xu, C. Li, J. Shi, H. O. Wang, Org. Lett. 2018, 20, 2181.
K. Nakamura, Q.-Q. Li, O. Krejčí, A. S. Foster, K. Sun, S. Kawai, S. Ito,
J. Am. Chem. Soc. 2020, 142, 11363.
[12] Hepta[8]circulene is defined as cyclooctatetraene with seven
surrounding fused rings.[2a,21]
[13] Although intermolecular Scholl reactions sometimes take place,[22] the
reaction in this work selectively produced intramolecular reaction
products 1a–c or 1f–h.
[6]
[7]
a) Y. Shen, C.-F. Chen, Chem. Rev. 2012, 112, 1463; b) W.-L. Zhao, M.
Li, H.-Y. Lu, C.-F. Chen, Chem. Commun. 2019, 55, 13793; c) K. Dhbaibi,
L. Favereau, J. Crassous, Chem. Rev. 2019, 119, 8846.
[14] The spin density at the terminal benzene rings of the cation radical of
methoxy-appended helicene was calculated to be higher than that of 1a
or 1b, which might promote the concurrent C–C bond formation to
produce 4 (Supporting Information).
[8]
a) S. D. Dreher, D. J. Weix, T. J. Katz, J. Org. Chem. 1999, 64, 3671; b)
K. Nakano, Y. Hidehira, K. Takahashi, T. Hiyama, K. Nozaki, Angew.
Chem. Int. Ed. 2005, 44, 7136; Angew. Chem. 2005, 117, 7298; c) G. M.
Upadhyay, H. R. Talele, S. Sahoo, A. V. Bedekar, Tetrahedron Lett. 2014,
55, 5394; d) G. M. Upadhyay, A. V. Bedekar, Tetrahedron 2015, 71,
5644; e) G. M. Upadhyay, H. R. Talele, A. V. Bedekar, J. Org. Chem.
2016, 81, 7751; f) M. Krzeszewski, T. Kodama, E. M. Espinoza, V. I.
Vullev, T. Kubo, D. T. Gryko, Chem. Eur. J. 2016, 22,16478; g) F. Chen,
T. Tanaka, Y. S. Hong, T. Mori, D. Kim, A. Osuka, Angew. Chem. Int. Ed.
2017, 56, 14688; Angew. Chem. 2017, 129, 14880; h) K. Uematsu, K.
Noguchi, K. Nakano, Phys. Chem. Chem. Phys. 2018, 20, 3286; i) G. M.
Labrador, C. Besnard, T. Bürgi, A. I. Poblador-Bahamonde, J. Bosson, J.
Lacour, Chem. Sci. 2019, 10, 7059; j) S. K. Pedersen, K. Eriksen, M.
Pittelkow, Angew. Chem. Int. Ed. 2019, 58, 18419; Angew. Chem. 2019,
131, 18590; k) F. Saal, F. Zhang, M. Holzapfel, M. Stolte, E. Michail, M.
Moos, A. Schmiedel, A.-M. Krause, C. Lambert, F. Würthner, P. Ravat,
J. Am. Chem. Soc. 2020, 142, 21298.
[15] For examples of the formation of nonhexagonal rings via Scholl reactions,
see: a) K. Kawasumi, Q. Zhang, Y. Segawa, L. T. Scott, K. Itami, Nature
Chem. 2013, 5, 739; b) H.-W. Ip, C.-F. Ng, H.-F. Chow, D. Kuck, J. Am.
Chem. Soc. 2016, 138, 13778; c) L. He, C.-F. Ng, Y. Li, Z. Liu, D. Kuck,
H.-F. Chow, Angew. Chem. Int. Ed. 2018, 57, 13635; Angew. Chem.
2018, 130, 13823.
[16] For examples of a rearrangement during Scholl reactions, see: a) J. Liu,
A. Narita, S. Osella, W. Zhang, D. Schollmeyer, D. Beljonne, X. Feng, K.
Müllen, J. Am. Chem. Soc. 2016, 138, 2602; b) S. Nobusue, K. Fujita, Y.
Tobe, Org. Lett. 2017, 19, 3227; c) X. Zhang, Z. Xu, W. Si, K. Oniwa, M.
Bao, Y. Yamamoto, T. Jin, Nat. Commun. 2017, 8, 15073; d) M.
Krzeszewski, K. Sahara, Y. M. Poronik, T. Kubo, D. T. Gryko, Org. Lett.
2018, 20, 1517.
[17] Coalescence was not observed from the 1H NMR spectra of 1a at 30–
150 °C, suggesting that the racemization of the azahelicenes is strictly
prohibited.
[9]
a) K. Goto, R. Yamaguchi, S. Hiroto, H. Ueno, T. Kawai, H. Shinokubo,
Angew. Chem. Int. Ed. 2012, 51, 10333; Angew. Chem. 2012, 124,
10479; b) C. Shen, M. Srebro-Hooper, M. Jean, N. Vanthuyne, L. Toupet,
J. A. G. Williams, A. R. Torres, A. J. Riives, G. Muller, J. Autschbach, J.
Crassous, Chem. Eur. J. 2017, 23, 407; c) A. Ushiyama, S. Hiroto, J.
Yuasa, T. Kawai, H. Shinokubo, Org. Chem. Front. 2017, 4, 664; d) T.
Otani, A. Tsuyuki, T. Iwachi, S. Someya, K. Tateno, H. Kawai, T. Saito,
K. S. Kanyiva, T. Shibata, Angew. Chem. Int. Ed. 2017, 56, 3906; Angew.
Chem. 2017, 129, 3964; e) H. Nishimura, K. Tanaka, Y. Morisaki, Y.
Chujo, A. Wakamiya, Y. Murata, J. Org. Chem. 2017, 82, 5242; f) Z.
Domínguez, R. López-Rodríguez, E. Álvarez, S. Abbate, G. Longhi, U.
Pischel, A. Ros, Chem. Eur. J. 2018, 24, 12660; g) J. Full, S. P. Panchal,
J. Gçtz, A.-M. Krause, A. Nowak-Król, Angew. Chem. Int. Ed. 2021, 60,
4350; Angew. Chem. 2021, 133, 4396.
[18] The use of protonic acid such as MSA instead of BF3×OEt2 also produced
3, while chloranil/BF3×OEt2 system was found to produce 3 in the highest
yield. Although the initial catalytic proton source is unclear, a proton
generated during the Scholl reaction might catalyze the arenium cation
pathway.
[19] Because model compound (R) lacks another naphthylphenyl group, the
possible repulsion between the two substituents was not included. If the
repulsion is considered, the TS energy of A1 to A6 would be significantly
higher, while that of A1 to A2 would not be strongly affected.
[20] BBr3-mediated formation of furan rings to give tetraheterole-based
[8]circulenes were reported by Tanaka[4f] and Pittelkow.[4h]
[21] a) C.-N. Feng, W.-C. Hsu, J.-Y. Li, Y.-T. Wu, Chem. Eur. J. 2016, 22,
9198; b) F. Chen, T. Tanaka, T. Mori, A. Osuka, Chem. Eur. J. 2018, 24,
7489.
[10] a) K. Nakamura, S. Furumi, M. Takeuchi, T. Shibuya, K. Tanaka, J. Am.
Chem. Soc. 2014, 136, 5555; b) T. Matsuno, Y. Koyama, S. Hiroto, J.
Kumar, T. Kawai, H. Shinokubo, Chem. Commun. 2015, 51, 4607; c) Y.
Uchida, T. Hirose, T. Nakashima, T. Kawai, K. Matsuda, Org. Lett. 2016,
18, 2118; d) H. Oyama, M. Akiyama, K. Nakano, M. Naito, K. Nobusawa,
K. Nozaki, Org. Lett. 2016, 18, 3654; e) Y. Yamamoto, H. Sakai, J. Yuasa,
Y. Araki, T. Wada, T. Sakanoue, T. Takenobu, T. Kawai, T. Hasobe,
Chem. Eur. J. 2016, 22, 4263; f) K. Dhbaibi, L. Favereau, M. Srebro-
Hooper, M. Jean, N. Vanthuyne, F. Zinna, B. Jamoussi, L. D. Bari, J.
Autschbach, J. Crassous, Chem. Sci. 2018, 9, 735; g) Y. Nakakuki, T.
Hirose, H. Sotome, H. Miyasaka, K. Matsuda, J. Am. Chem. Soc. 2018,
140, 4317; h) C. M. Cruz, S. Castro-Fernádez, E. Maçôas, J. M. Cuerva,
A. G. Campaña, Angew. Chem. Int. Ed. 2018, 57, 14782; Angew. Chem.
2018, 130, 14998; i) H. Kubo, D. Shimizu, T. Hirose, K. Matsuda, Org.
Lett. 2020, 22, 9276; j) Z. Qiu, S. Asako, Y. Hu, C.-W. Ju, T. Liu, L.
[22] B. T. King, J. Kroulík, C. R. Robertson, P. Rempala, C. L. Hilton, J. D.
Korinek, L. M. Gortari, J. Org. Chem. 2007, 72, 2279.
6
This article is protected by copyright. All rights reserved.