Facile Preparation of Heteroaromatic Compounds
A R T I C L E S
Scheme 1. Preparation of Heteroaromatic Compounds
Scheme 2. Preparation of Metalated Pyridine
compound, as summarized in Scheme 1. These transformations
consist of an organized assembly of unsaturated compounds
around the titanium reagent, allowing a one-pot, multicomponent
coupling process, which will be described in order.
Results and Discussion
Preparation of Pyridines. Among a wide variety of prepara-
tive methods of pyridines, cycloaddition of two acetylenes and
a nitrile has attracted much attention.6,7 Starting from titanacy-
clopentadienes 2, we have recently reported a selective pyridine
synthesis (i.e., 13) by the coupling with p-toluenesulfonylnitrile
12, TolSO2- ) p-MeC6H4SO2-) (eq 4).8,9 If a similar reaction
5
is started with azatitanacyclopentadienes 3 and these successfully
undergo the uptake of a likely reaction partner, sulfonylacetylene
10
1
4 in eq 5, metalated pyridines 15 with a different substitution
pattern will be produced.
(
(
5) For reviews, see: (a) Katritzky, A. R., Rees, C. W., Eds. ComprehensiVe
Heterocyclic Chemistry; Pergamon Press: Oxford, U.K., 1984; Vol. 2. (b)
Gilchrist, T. L. J. Chem. Soc., Perkin Trans. 1 2001, 2491-2515. (c)
Mongin, F.; Qu e´ guiner, G. Tetrahedron 2001, 57, 4059-4090. (d) Henry,
G. D. Tetrahedron 2004, 60, 6043-6061. (e) Katritzky, A. R., Ed. Chem.
ReV. 2004, 104, 2127-2812.
(6) For reviews, see: (a) Nakamura, I.; Yamamoto, Y. Chem. ReV. 2004, 104,
2
127-2198. (b) Varela, J. A.; Sa a´ , C. Chem. ReV. 2003, 103, 3787-3802.
(
c) B o¨ nnemann, H.; Brijoux, W. In Transition Metals for Organic Synthesis;
Beller, M., Bolm, C., Eds.; Wiley-VCH: Weinheim, Germany, 1998; Vol.
, pp 114-135. (d) Grotjahn, D. B. In ComprehensiVe Organometallic
1
Chemistry II; Hegedus, L. S., Abel, E. W., Stone, F. G. A., Wilkinson, G.,
Eds.; Pergamon Press: Oxford, U.K., 1995; Vol. 12, pp 741-770. (e)
Chelucci, G. Tetrahedron: Asymmetry 1995, 6, 811-826. (f) Schore, N.
E. In ComprehensiVe Organic Synthesis; Trost, B. M., Fleming, I., Eds.;
Pergamon Press: Oxford, U.K., 1991; Vol. 5, pp 1129-1162. (g)
B o¨ nnemann, H. Angew. Chem., Int. Ed. Engl. 1985, 24, 248-262. (h)
Vollhardt, K. P. C. Angew. Chem., Int. Ed. Engl. 1984, 23, 539-556.
7) (a) Wakatsuki, Y.; Yamazaki, H. J. Chem. Soc., Chem. Commun. 1973,
To azatitanacycle 7 generated from 4 and 6 as described in
eq 3 was added sulfonylacetylene 14, and the reaction was
11
continued at -30 °C (Scheme 2). Gratifyingly, the formation
of a single pyridine 18 was observed after aqueous workup.
The presence of the titanated pyridine 17 was separately
confirmed by its deuteriolysis to give 18-d with high deuterium
incorporation. A proposed mechanism of this reaction is also
depicted in Scheme 2. Sulfonylacetylene 14 was incorporated
into the azatitanacycle 7 in a regioselective manner to give
(
2
80. (b) Wakatsuki, Y.; Yamazaki, H. J. Chem. Soc., Dalton Trans. 1978,
278-1282. There had been no reports on the selective cyclotrimerization
1
of two different unsymmetrical acetylenes and a nitrile, before we and others
reported such examples (see refs 8 and 9). For recent reports, which deal
with the cyclotrimerization of the same (refs 7c-j), symmetrical (ref 7k),
or tethered (refs 7l-r) substrates, see: (c) Bianchini, C.; Meli, A.; Peruzzini,
M.; Vacca, A.; Vizza, F. Organometallics 1991, 10, 645-651. (d) Smith,
D. P.; Strickler, J. R.; Gray, S. D.; Bruck, W. A.; Holmes, R. S.; Wigley,
D. E. Organometallics 1992, 11, 1275-1288. (e) Viljoen J. S.; du Plessis,
J. A. K. J. Mol. Catal. 1993, 79, 75-84. (f) Diversi, P.; Ermini, L.; Ingrosso,
G.; Lucherini, A. J. Organomet. Chem. 1993, 447, 291-298. (g) Hill, J.
E.; Balaich, G.; Fanwick, P. E.; Rothwell, I. P. Organometallics 1993, 12,
1
2
intermediates 16a,b. Elimination of the sulfonyl group from
16b leads to the formation of the pyridyltitanium compound
1
7.
Other results of the present pyridine synthesis are summarized
2
2
1
3
1
911-2924. (h) Jerome, K. S.; Parsons, E. J. Organometallics 1993, 12,
991-2993. (i) Heller, B.; Oehme, G. J. Chem. Soc., Chem. Commun.
995, 179-180. (j) Fatland, A. W.; Eaton, B. E. Org. Lett. 2000, 2, 3131-
133. (k) Takahashi, T.; Tsai, F.-Y.; Kotora, M. J. Am. Chem. Soc. 2000,
22, 4994-4995. (l) Sa a´ , C.; Crotts, D. D.; Hsu, G.; Vollhardt, K. P. C.
in Table 1. Besides simple R-methoxyacetonitrile (6), a branched
homologue 20 afforded the desired pyridine 21 (entry 2) and
25 (entry 5) in good yield. Silylacetylene 22 underwent the
regioselective coupling with nitrile 6, followed by the regio-
selective uptake of sulfonylacetylene 14, to yield virtually single
titanated pyridines, which, after hydrolysis or deuteriolysis, gave
pyridine 23 or its deuterium-labeled compound 23-d (entry 3).
The synthetic utility of the pyridyltitanium species was further
Synlett 1994, 487-489. (m) Takai, K.; Yamada, M.; Utimoto, K. Chem.
Lett. 1995, 851-852. (n) Varela, J. A.; Castedo, L.; Sa a´ , C. J. Org. Chem.
1
997, 62, 4189-4192. (o) Varela, J. A.; Castedo, L.; Sa a´ , C. J. Am. Chem.
Soc. 1998, 120, 12147-12148. (p) Varela, J. A.; Castedo, L.; Sa a´ , C. Org.
Lett. 1999, 1, 2141-2143. (q) Yamamoto, Y.; Okuda, S.; Itoh, K. Chem.
Commun. 2001, 1102-1103. (r) Yamamoto, Y.; Ogawa, R.; Itoh, K. J.
Am. Chem. Soc. 2001, 123, 6189-6190.
(
8) Suzuki, D.; Tanaka, R.; Urabe, H.; Sato, F. J. Am. Chem. Soc. 2002, 124,
3
518-3519. This reaction has the following feature: (i) single pyridines
were obtained, for the first time, from two different, unsymmetrical
acetylenes and a nitrile, and (ii) titanated pyridines were produced rather
than pyridines themselves.
(10) Suzuki, D.; Urabe, H.; Sato, F. J. Am. Chem. Soc. 2001, 123, 7925-7926.
(11) This is commercially available.
(
9) See also: Takahashi, T.; Tsai, F.-Y.; Li. Y.; Wang, H.; Kondo, Y.;
Yamanaka, M.; Nakajima, K.; Kotora, M. J. Am. Chem. Soc. 2002, 124,
5
(12) The intermediates 16a,b correspond to the [4 + 2]-type and insertion
059-5067.
mechanisms, respectively. See: ref 10.
J. AM. CHEM. SOC.
9
VOL. 127, NO. 20, 2005 7475