COMMUNICATIONS
NMR (CDCl3): d 143.94, 143.66, 143.48, 143.20, 131.05, 131.00, 130.93,
126.33, 46.24, 46.20, 46.17, 46.13, 45.92, 45.69, 45.61, 45.38, 40.17, 40.05,
39.89, 39.73, 39.61, 39.52, 39.33, 39.29, 39.26, 34.76, 34.61. 34.51, 34.41, 34.26,
22.69, 22.65, 22.61, 20.82; 31P NMR (CDCl3): d 7.3; [a]D 221.88 (c
1.01, CHCl3); HR-MS calcd for C22H32P2: 358.1975; found: 358.1982.
Mol. Catal. 1989, 29, 165; c) X. Zhang, T. Taktomi, T. Yoshizumi, H.
Kumobayashi, S. Akutagawa, K. Mashima, H. Takaya, J. Am. Chem.
Soc. 1993, 115, 3318; d) T. Ohkuma, H. Ooka, S. Hashiguchi, T.
Ikariya, R. Noyori, ibid. 1995, 117, 2675.
[9] a) Z. Chen, R. L. Halterman, Synlett 1990, 103; b) Z. Chen, K. Eriks,
R. L. Halterman, Organometallics 1991, 10, 3449.
1
6: H NMR (CDCl3): d 7.20 ± 7.10 (m, 2H, aromatic), 7.05 ± 6.90 (m, 2H,
[10] E. P. Kyba, S.-T. Liu, R. L. Harris, Organometallics 1983, 2, 1877.
[11] R. R. Schrock, J. A. Osborn, J. Chem. Soc. Chem. Commun. 1970, 567.
[12] J. P. Collman, L. S. Hegedus, J. R. Norton, R. G. Finke, Principles and
Applications of Organotransition Metal Chemsitry, University Science
Books, Mill Valley, 1987, chap. 10.
[13] 31P NMR data for [Rh(cod)5]Cl (prepared in situ, CD3OD): ABX
system, d 50.7 (dd, 1J(Rh,P) 140.6 Hz), 2J(P,P) 23.6 Hz), 37.1
(dd, 1J(Rh,P) 141.6 Hz, 2J(P,P) 23.6 Hz)). It is noteworthy that the
ligand 5 in [Rh(cod)(5)]Cl does not have C2 symmetry. A possible
explanation is that the phosphabicyclo[2.2.1]heptane is too bulkly to
allow the PennPhos to exist in a C2-symmetrical fashion.
aromatic), 3.38 (br d, 2H, 2J(P,H) 14.2 Hz, PCH), 2.85 (br d, 2H,
2J(P,H) 13.5 Hz, PCH), 1.85 ± 1.45 (m, 12H), 1.30 ± 1.08 (m, 4H), 1.03
3
3
(d, 6H, J(H,H) 6.4 Hz, CH3), 0.96 (d, 6H, J(H,H) 5.6 Hz, CH3), 0.86
(d, 6H, 3J(H,H) 6.5 Hz, CH3), 0.47 (s, 6H, CH3); 13C NMR (CDCl3): d
143.97, 143.62, 143.56, 143.50, 143.45, 143.09, 130.96, 130.90, 130.86, 126.11,
54.10, 54.06, 54.03, 48.65, 48.56, 48.46, 42.02, 41.96, 41.24, 41.20, 41.18, 41.14,
37.94, 37.77, 37.60, 37.46, 33.29, 33.27, 33.24, 31.69, 23,45, 23.40, 23.35, 22.22.
20.97, 20.54; 31P NMR (CDCl3): d 8.7; [a]D 226.7 (c 1.03, CHCl3);
HR-MS calcd for C30H48P2: 470.3231; found: 470.3229.
General procedure for asymmetric hydrogenation: To
a solution of
[Rh(cod)Cl]2 (2.5 mg, 0.005 mmol) in MeOH (10 mL) was added
5
(3.7 mg, 0.01 mmol). After the reaction mixture was stirred at room
temperature for 10 min, acetophenone (1.0 mmol) was added. The orange-
yellow solution was stirred for 2 min, and the desired amount of the
additive (as a solution in MeOH) was then added. This mixture was stirred
for about 5 min, and hydrogen was introduced. The hydrogenation was
performed in a Parr autoclave at room temperature under 30 atm of
hydrogen for 24 h. The residue was passed through a short silica gel column
to remove the catalyst, and eluted with diethyl ether. The enantiomeric
excesses and reaction conversion were measured by gas chromatography
on a Supelco b-DEX 120 column. The absolute configuration of the
product was determined by comparing the observed rotation with the
reported value.[5c,8d]
Amine Additives Greatly Expand the Scope of
Asymmetric Hydrosilylation of Imines**
Xavier Verdaguer, Udo E. W. Lange, and
Stephen L. Buchwald*
Dedicated to Professor Satoru Masamune
Received: December 19, 1997 [Z11279IE]
German version: Angew. Chem. 1998, 110, 1203 ± 1207
The demand for enantiomerically pure secondary amines
has prompted considerable effort[1] in the development of
catalytic processes for asymmetric hydrogenation[2] and
hydrosilylation[3] of imines. We recently reported a highly
enantioselective titanium-catalyzed hydrosilylation of
imines.[4] This method involves treatment of (S,S)-ethylene-
1,2-bis(h5-4,5,6,7-tetrahydro-1-indenyl)titanium difluoride[5]
(1) with phenylsilane,[4, 6] which yields a very active catalytic
system for the hydrosilylation of N-methyl and cyclic imines
[Eq. (1)]. For example, N-methylimine 2 undergoes complete
hydrosilylation within 12 h at room temperature (Table 1,
entry 1). Although high turnover numbers (up to 5000) and
Keywords: asymmetric catalysis ´ chirality ´ hydrogenations
´ ketones ´ rhodium
[1] a) Catalytic Asymmetric Synthesis (Ed.: I. Ojima), VCH, New York,
1993; b) R. A. Sheldon, Chirotechnology, Marcel Dekker, New York,
1993; c) R. Noyori, Asymmetric Catalysis In Organic Synthesis, Wiley,
New York, 1994.
[2] a) G. Zhu, Z. Chen, Q. Jiang, D. Xiao, P. Cao, X. Zhang, J. Am. Chem.
Soc. 1997, 119, 3836; b) Z. Chen, Q. Jiang, G. Zhu, D. Xiao, P. Cao, C.
Guo, X. Zhang, J. Org. Chem. 1997, 62, 4521.
[3] a) M. J. Burk, J. E. Feaster, R. L. Harlow, Organometallics 1990, 9,
2653; b) M. J. Burk, J. E. Feaster, W. A. Nugent, R. L. Harlow, J. Am.
Chem. Soc. 1993, 115, 10125; c) M. J. Burk, J. R. Lee, J. P. Martinez,
ibid. 1994, 116, 10847.
[4] We abbreviate these chiral ligands as PennPhos to indicate that these
ligands were made at Penn State University.
[5] For aluminum and boron reagents, see a) R. Noyori, I. Tomino, M.
Yamada, M. Nishizawa, J. Am. Chem. Soc. 1984, 106, 6717; b) S.
Masamune, R. M. Kennedy, J. S. Peterson, ibid. 1986, 108, 7404;
c) H. C. Brown, P. V. Ramachadran, Acc. Chem. Res. 1992, 25, 16.
[6] For oxazaborolidine catalysts, see a) S. Itsuno, K. Ito, A. Hirao, S.
Nasahama, J. Chem. Soc. Chem. Commun. 1983, 469; b) E. J. Corey,
R. K. Bakshi, S. Shibata, J. Am. Chem. Soc. 1987, 109, 5551; for
hydrosilylation, see c) H. Brunner, R. Becker, G. Riepl, Organo-
metallics 1984, 3, 1354; d) H. Nishiyama, M. Kondo, T. Nakamura, K.
Itoh, Organometallics 1991, 10, 500; e) M. Sawamura, R. Kuwano, Y.
Ito, Angew. Chem. 1994, 106, 92; Angew. Chem. Int. Ed. Engl. 1994, 33,
111; for tranfer hydrogenation, see f) R. Noyori, S. Hashiguchi, Acc.
[*] Prof. Dr. S. L. Buchwald, Dr. X. Verdaguer, Dr. U. E. W. Lange
Department of Chemistry
Massachusetts Institute of Technology
Cambridge, MA 02139 (USA)
Fax: (1)617-253-3297
[**] This work was supported by the National Institutes of Health and
Dow Chemical Company. We thank Boulder Scientific for their
generous gift of chiral metallocene. X.V. thanks the Spanish Ministry
of Education and Science for a postdoctoral fellowship. U.E.W.L.
thanks the Deutsche Forschungsgemeinschaft for a postdoctoral
fellowship. We are grateful to Matthew T. Reding and Malisa V.
Troutman for the preparation of 1, Dr. N. Radu and Professor G. C. Fu
for insightful comments, and Marcus Hansen for experimental help
and discussions.
Â
Chem. Res. 1997, 30, 97; g) D. A. Evans, S. G. Nelson, M. R. Gagne,
A. R. Muci, J. Am. Chem. Soc. 1993, 115, 9800; h) S. Hashiguchi, A.
Fujii, J. Takehara, T. Ikariya, R. Noyori, ibid. 1995, 117, 7562.
[7] a) R. Noyori, Science 1990, 248, 1194; b) R. Noyori, H. Takaya, Acc.
Chem. Res. 1990, 23, 345; c) M. J. Burk, M. F. Gross, G. P. Harper, C. S.
Kalberg, J. R. Lee, J. P. Martinez, Pure Appl. Chem. 1996, 68, 37.
Â
Â
[8] For direct hydrogenation, see a) J. Bakos, I. Toth, B. Heil, L. Marko, J.
Organomet. Chem. 1985, 279, 23; b) A. S. C. Chan, C. R. Landis, J.
Angew. Chem. Int. Ed. 1998, 37, No. 8
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1998
1433-7851/98/3708-1103 $ 17.50+.50/0
1103