Job/Unit: O43272
/KAP1
Date: 03-12-14 18:07:33
Pages: 6
M. Shimizu, T. Tamagawa
SHORT COMMUNICATION
2007, p. 295–412; c) D. F. Perepichka, I. F. Perepichka, H.
Meng, F. Wudl, Organic Light-Emitting Materials and Devices
(Eds.: Z. Li, H. Meng), Taylor & Francis, Boca Raton, 2007,
p. 45–293; d) A. C. Grimsdale, K. L. Chan, R. E. Martin, P. G.
Jokisz, A. B. Holmes, Chem. Rev. 2009, 109, 897–1091; e) Z.
Zhao, J. W. Y. Lam, B. Z. Tang, J. Mater. Chem. 2012, 22,
23726–23740.
that of 1a, which is consistent with the trend in the absorp-
tion edges shown in Figure 3 (a) and the blueshifted
fluorescence spectra of 2. The observed electronic effects of
substituents in the para positions of each phenyl group of
the diarylamino moieties on the energy differences in the
HOMOs and LUMOs were consistent with the DFT calcu-
lations.
[3]
For recent examples of blue fluorophores, see: a) J.-Y. Hu, Y.-
J. Pu, F. Satoh, S. Kawata, H. Katagiri, H. Sasabe, J. Kido,
Adv. Funct. Mater. 2014, 24, 2064–2071; b) S. Wu, M. Aonuma,
Q. Zhang, S. Huang, T. Nakagawa, K. Kuwabara, C. Adachi,
J. Mater. Chem. C 2014, 2, 421–424; c) P. Y. Chou, H. H. Chou,
Y. H. Chen, T. H. Su, C. Y. Liao, H. W. Lin, W. C. Lin, H. Y.
Yen, I. C. Chen, C. H. Cheng, Chem. Commun. 2014, 50, 6869–
6871; d) J. Huang, N. Sun, P. Chen, R. Tang, Q. Li, D. Ma, Z.
Li, Chem. Commun. 2014, 50, 2136–2138; e) S. Y. Lee, T. Ya-
suda, Y. S. Yang, Q. Zhang, C. Adachi, Angew. Chem. Int. Ed.
2014, 53, 6402–6406; Angew. Chem. 2014, 126, 6520–6524; f) J.
Huang, N. Sun, Y. Dong, R. Tang, P. Lu, P. Cai, Q. Li, D. Ma,
J. Qin, Z. Li, Adv. Funct. Mater. 2013, 23, 2329–2337; g) H.
Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature
2012, 492, 234–238; h) Q. Zhang, J. Li, K. Shizu, S. Huang, S.
Hirata, H. Miyazaki, C. Adachi, J. Am. Chem. Soc. 2012, 134,
14706–14709; i) M. Shimizu, K. Mochida, T. Hiyama, J. Phys.
Chem. C 2011, 115, 11265–11274; j) M. Shimizu, K. Mochida,
Y. Asai, A. Yamatani, R. Kaki, T. Hiyama, N. Nagai, H. Yam-
agishi, H. Furutani, J. Mater. Chem. 2012, 22, 4337–4342; k)
H.-H. Chou, Y.-H. Chen, H.-P. Hsu, W.-H. Chang, Y.-H.
Chen, C.-H. Cheng, Adv. Mater. 2012, 24, 5867–5871; l) W. Li,
D. Liu, F. Shen, D. Ma, Z. Wang, T. Feng, Y. Xu, B. Yang, Y.
Ma, Adv. Funct. Mater. 2012, 22, 2797–2803; m) D. Yu, F.
Zhao, Z. Zhang, C. Han, H. Xu, J. Li, D. Ma, P. Yan, Chem.
Commun. 2012, 48, 6157–6159; n) I. Cho, S. H. Kim, J. H.
Kim, S. Park, S. Y. Park, J. Mater. Chem. 2012, 22, 123–129;
o) K. E. Linton, A. L. Fisher, C. Pearson, M. A. Fox, L.-O.
Palsson, M. R. Bryce, M. C. Petty, J. Mater. Chem. 2012, 22,
11816–11825; p) C. Liu, Y. Li, Y. Zhang, C. Yang, H. Wu, J.
Qin, Y. Cao, Chem. Eur. J. 2012, 18, 6928–6934; q) C. Liu, Y.
Gu, Q. Fu, N. Sun, C. Zhong, D. Ma, J. Qin, C. Yang, Chem.
Eur. J. 2012, 18, 13828–13835.
Conclusions
In conclusion, the molecular design of 4,5-bis(diaryl-
amino)phthalates, which involved construction of 1,2-
bis(donor)-4,5-bis(acceptor)-substituted benzenes, was ef-
fective for the development of blue fluorophores exhibiting
good luminescence efficiency in the solid state. The de-
signed blue emitters were easy to synthesize and were ther-
mally stable, which are attractive features for practical ap-
plications. The emission color could be finely tuned by
modifying the substituents in the para positions of each
phenyl group of the diarylamino groups as well as the
carbonaceous moieties of the alkoxycarbonyl groups. The
good luminescence efficiency in powder and in the poly-
(methyl methacrylate) host matrix indicates the strong
potential of these phthalates for use as blue-emissive host
materials and dopants in organic light-emitting diodes.
Further extension of this novel molecular design principle
to the development of non-blue-emissive materials and
application of the blue-emissive phthalates to organic light-
emitting diodes are in progress.
Supporting Information (see footnote on the first page of this arti-
cle): General experimental methods, representative procedures for
synthesis, characterization data, NMR spectra of 2, summary of
X-ray crystallographic analysis of 2d, overlaid absorption and
fluorescence spectra of 2d in toluene, and procedures for measure-
ment and PMMA film preparation.
[4]
[5]
a) N. J. Turro, Modern Molecular Photochemistry, University
Science Books, Sausalito, USA, 1978; b) B. Valeur, Molecular
Fluorescence–Principles
and
Applications,
Wiley-VCH,
Weinheim, Germany, 2002.
a) M. Kasha, H. R. Rawls, M. A. El-Bayoumi, Pure Appl.
Chem. 1965, 11, 371–392; b) R. C. Powell, Z. G. Soos, J. Lumin.
1975, 11, 1–45; c) J. Cornil, D. Beljonne, J. P. Calbert, J. L.
Brédas, Adv. Mater. 2001, 13, 1053–1067; d) S. Varghese, S.
Das, J. Phys. Chem. Lett. 2011, 2, 863–873; e) J. Gierschner,
S. Y. Park, J. Mater. Chem. C 2013, 1, 5818–5832; f) C. Vijayak-
umar, V. K. Praveen, A. Ajayaghosh, Adv. Mater. 2009, 21,
2059–2063.
M. Shimizu, Y. Asai, Y. Takeda, A. Yamatani, T. Hiyama, Tet-
rahedron Lett. 2011, 52, 4084–4089.
M. Shimizu, Aggregation-Induced Emission: Fundamentals
(Eds.: A. Qin, B. Z. Tang), Wiley, Chichester, UK, 2013, p. 83–
104.
Acknowledgments
This work was financially supported by the Japan Science and
Technology Agency through a Grant-in-Aid for the Adaptable and
Seamless Technology Transfer Program through target-driven
R&D (no. AS2414069M). The authors thank Mr. Yuiga Asai and
Mr. Akinori Yamatani for their experimental assistance in the early
stage of this work.
[6]
[7]
[8]
[9]
CCDC-1026010 (for 2b) contains the supplementary crystallo-
graphic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B.
Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li,
H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Son-
nenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hase-
gawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai,
T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M.
Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Starov-
erov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell,
[1] a) Z. H. Kafafi (Ed.), Organic Electroluminescence, Taylor &
Francis, Boca Raton, USA, 2005; b) K. Müllen, U. Scherf
(Eds.), Organic Light-Emitting Devices. Synthesis Properties
and Applications, Wiley-VCH, Weinheim, Germany, 2006; c) Z.
Li, H. Meng (Eds.), Organic Light-Emitting Materials and De-
vices, Taylor & Francis, Boca Raton, USA, 2007; d) H. Yersin
(Ed.), Highly Efficient OLEDs with Phosphorescent Materials,
Wiley-VCH, Weinheim, Germany, 2008; e) H. Sasabe, J. Kido,
J. Mater. Chem. C 2013, 1, 1699–1707.
[2] a) M. Shimizu, T. Hiyama, Chem. Asian J. 2010, 5, 1516–1531;
b) H. Meng, N. Herron, Organic Light-Emitting Materials and
Devices (Eds.: Z. Li, H. Meng), Taylor & Francis, Boca Raton,
4
www.eurjoc.org
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 0000, 0–0