ACS Catalysis
Letter
agent in cosmetic industry.27 Under the conditions employed in
Table 3, prolongation of the reaction duration had only a
limited effect on improving the DHA yield, due to the
occurrence of secondary reactions of DHA (Table 4). Attempts
were then made to enhance the DHA yield by using more
catalyst (2Au/CuO) to reach a complete GL conversion in the
possible shortest reaction duration. On increasing the catalyst
loading up to GL/Au = 50 and 20 (mol/mol), we obtained
high DHA yields of 75−80% at nearly complete GL conversion
by adjusting the other reaction parameters (temperature, PO2,
and duration), as listed in Table 5.
ACKNOWLEDGMENTS
■
The authors would like to thank Prof. Ming-Yu Ding for his
kind help during the establishment of the HPLC and IC
methods for analyses of products from the oxidation reactions.
We also acknowledge the Natural Science Foundation of China
(NSFC, grants 21033004 and 21221062) and Tsinghua
University for financial support of this work.
REFERENCES
■
(1) Medlin, J. W. ACS Catal. 2011, 1, 1284−1297.
(2) Besson, M.; Gallezot, P.; Pinel, C. Chem. Rev. 2014, 114, 1827−
1870.
Only two research groups detected earlier a formation of
DHA in Au-catalyzed GL oxidation studies with the presence of
NaOH at 60 °C; the supporting materials for the catalytic Au
nanoparticles were carbons18,22,23 and CeO2.24 One group
worked with a batch (autoclave) reactor, and the obtained
DHA selectivity was in the range of 20−27% at GL conversion
levels of 30−50%.18,22,24 The other group conducted the
reaction in a continuous down-flow slurry bubble column
reactor and reported a DHA selectivity of 53% at 30% GL
conversion.23 Obviously, the DHA yields obtained in Table 5
under the base-free conditions are far higher than those
obtained over the earlier Au/C and Au/CeO2 catalysts (<16%).
In the literature, Bi- and Au-modified Pt, and bimetallic Pd−Ag
on various carbon supports were registered as the selective
catalysts for DHA synthesis from GL oxidation in water.28
Though the selectivity to DHA could be up to 80−85%, their
offered DHA yields were in the range of 20−52%,28 which are
also much lower than the high yields shown in Table 5.
Therefore, this study uncovers for the first time that DHA
was the only primary product of catalytic GL oxidation over
supported Au NPs under the base-free conditions in water. The
Au NPs also catalyzed further oxidations of DHA, which
produced CO2 as the main and final product with GCA and OA
being the intermediate products. On adjusting the catalyst
loading and other parameters for GL oxidation, however, DHA
yields up to 80% could be still obtained. Further studies on the
reactions of 1,2- and 1,3-PDO, unlabeled and deuterium-
labeled 2-PO, and 1-PO also confirmed the high activity and
specific selectivity of Au NPs toward the oxidation of secondary
alcohols under the base-free conditions, which strongly
demonstrate that a selective activation of the secondary C−H
bond is the key to the specific selectivity in the oxidation of
both GL and 1,2-PDO. These findings reveal an unprecedented
mode of Au catalyst for the selectivity control in polyol
activation and oxidation catalysis and point to a new dimension
in chemistry of Au-based oxidation catalysis. In particular, it
sheds a light on innovating Au catalysts for fine-tuning
oxidation catalysis toward special chemicals syntheses from
bioresourced polyols.
(3) Pagliaro, M.; Ciriminna, R.; Kimura, H.; Rossi, M.; Pina, C. D.
Angew. Chem., Int. Ed. 2007, 46, 4434−4440.
(4) Prati, L.; Spontoni, P.; Gaiassi, A. Top. Catal. 2009, 52, 288−296.
(5) Ketchie, W. C.; Fang, Y. L.; Wong, M. S.; Murayama, M.; Davis,
R. J. J. Catal. 2007, 250, 94−101.
(6) Dimitratos, N.; Villa, A.; Bianchi, C. L.; Prati, L.; Makkee, M.
Appl. Catal., A 2006, 311, 185−192.
(7) Veith, G. M.; Lupini, A. R.; Pennycook, S. J.; Villa, A.; Prati, L.;
Dudney, N. J. Catal. Today 2007, 122, 248−253.
(8) Villa, A.; Gaiassi, A.; Rossetti, I.; Bianchi, C. L.; Benthem, K.; van
Veith, G. M.; Prati, L. J. Catal. 2010, 275, 108−116.
(9) Maris, E. P.; Davis, R. J. J. Catal. 2007, 249, 328−337.
(10) Tao, L. Z.; Yan, B.; Liang, Y.; Xu, B. Q. Green Chem. 2013, 15,
696−705.
(11) Gu, Y. L.; Azzouzi, A.; Pouilloux, Y.; Jer
Green Chem. 2008, 10, 164−167.
(12) Kaufman, V. R.; Garti, N. J. Am. Oil Chem. Soc. 1982, 59, 471−
474.
́ ̂
ome, F.; Barrault, J.
(13) Zhou, C. H.; Beltramini, J. N.; Fan, Y. X.; Lu, G. Q. Chem. Soc.
Rev. 2008, 37, 527−549.
(14) Ketchie, W. C.; Murayama, M.; Davis, R. J. Top. Catal. 2007, 44,
307−317.
(15) Demirel-Gulen, S.; Lucas, M.; Waerna, J.; Salmi, T.; Murzin, D.;
̈
Claus, P. Top. Catal. 2007, 44, 299−305.
(16) Zope, B. N.; Hibbitts, D. D.; Neurock, M.; Davis, R. J. Science
2010, 330, 74−78.
(17) Carrettin, S.; McMorn, P.; Johnston, P.; Griffin, K.; Hutchings,
G. J. Chem. Commun. 2002, 696−697.
(18) Demirel-Gulen, S.; Lucas, M.; Claus, P. Catal. Today 2005,
̈
102−103, 166−172.
(19) Carrettin, S.; McMorn, P.; Johnston, P.; Griffin, K.; Kiely, C. J.;
Attard, G. A.; Hutchings, G. J. Top. Catal. 2004, 27, 131−136.
(20) Villa, A.; Veith, G. M.; Prati, L. Angew. Chem., Int. Ed. 2010, 49,
4499−4502.
(21) Kwon, Y.; Schouten, K. J. P.; Koper, M. T. M. ChemSusChem
2011, 3, 1176−1185.
(22) Demirel-Gulen, S.; Lehnert, K.; Lucas, M.; Claus, P. Appl. Catal.,
̈
B 2007, 70, 637−643.
(23) Pollington, S. D.; Enache, D. I.; Landon, P.;
Meenakshisundaram, S.; Dimitratos, N.; Wagland, A.; Hutchings, G.
J.; Stitt, E. H. Catal. Today 2009, 145, 169−175.
(24) Demirel-Gulen, S.; Kern, P.; Lucas, M.; Claus, P. Catal. Today
̈
2007, 122, 292−300.
ASSOCIATED CONTENT
(25) Hong, Y. C.; Sun, K. Q.; Han, K. H.; Liu, G.; Xu, B. Q. Catal.
Today 2010, 158, 415−422.
■
S
* Supporting Information
(26) Katryniok, B.; Kimura, H.; Skrzynska, E.; Girardon, J. S.;
Fongarland, P.; Capron, M.; Ducoulombier, R.; Mimura, N.; Paula, S.;
Dumeignil, F. Green Chem. 2011, 13, 1960−1979.
(27) Hekmat, D.; Bauer, R.; Fricke, J. Bioprocess Biosyst Eng. 2003, 26,
109−116.
Experimental details and supporting tables and figures. This
material is available free of charge via the Internet at http://
AUTHOR INFORMATION
(28) Besson, M.; Gallezot, P.; Pinel, C. Chem. Rev. 2014, 114, 1827−
1870 and references therein..
■
Corresponding Author
Notes
The authors declare no competing financial interest.
2230
dx.doi.org/10.1021/cs5005568 | ACS Catal. 2014, 4, 2226−2230