Williams, J. Chem. Soc., Faraday T rans. 2, 1988, 84, 105; (d) M. J.
Frost, P. Sharkey and I. W. M. Smith, J. Phys. Chem., 1993, 89,
by at least three channels [ those producing HOCO, CO
2
and CO. In the case of the decarboxylation and decarbonyla-
tion, our measurements provide no information as to whether
the co-products are molecular (i.e., RH and ROH) or two rad-
icals (i.e., R ] H and R ] OH). The experiments of Mearns
and Back12 on triÑuoroacetic acid do, however, provide com-
1
2254.
6
7
M. Aoyagi and S. Kato, J. Chem. Phys., 1984, 88, 6409.
(a) G. C. Schatz, M. S. Fitzcharles and L. B. Harding, Faraday
Discuss. Chem. Soc., 1987, 84, 359; (b) K. Kudla, A. G. Koures,
L. B. Harding and G. C. Schatz, J. Chem. Phys., 1992, 96, 7465.
D. Fulle, H. F. Hamann, H. Hippler and J. Troe, J. Chem. Phys.,
8
9
0
pelling evidence for a high yield of R \ CF in that case.
3
1
996, 105, 983.
R. Overend and G. Paraskevopoulos, Chem. Phys. L ett., 1977, 49,
09.
It is intriguing to speculate on whether the decarboxylation
and decarbonylation of triÑuoroacetic and acrylic acids occur
simultaneously with, or sequentially to, the channel (P.1)
which yields HOCO. It is possible that Ðssion of the CwC
bond generates a fraction of the HOCO with sufficient inter-
nal energy to undergo further decomposition. However, the
1
1
R. Forster, M. Frost, D. Fulle, H. F. Hamann, H. Hippler, A.
Schlepegrell and J. Troe, J. Chem. Phys., 1995, 103, 2949.
11 J. Nolte, J. Grussdorf, F. Temps and H. Gg. Wagner, Z. Natur-
forsch., 1993, 48a, 1234.
1
2 A. M. Mearns and R. A. Back, Can. J. Chem., 1963, 41, 1197.
high relative yields of both CO and CO from acrylic acid,
2
13 (a) R. N. Rosenfeld and B. R. Weiner, J. Am. Chem. Soc., 1983,
105, 3485; (b) R. N. Rosenfeld and B. R. Weiner, J. Am. Chem.
Soc., 1983, 105, 6233.
assuming the co-products to be C H ] H and C H ] OH
2
3
2 3
suggest that this is unlikely since the exothermicity of channel
(
P.1) in this case (see Table 1) is only slightly greater than the
14 P. C. Lessard, PhD thesis, University of California, Davis, 1990.
15 H. Morita, K. Fuke and S. Nagakura, Bull. Chem. Soc. Jpn., 1976,
thresholds for decomposition of HOCO to either H ] CO or
2
4
9, 922.
OH ] CO. Consequently, the HOCO formed in (P.1) would
1
6
7
D. C. Kitchen, N. R. Forde and L. J. Butler, J. Phys. Chem. A,
have to absorb essentially the whole of the exothermicity as
internal energy if HOCO were to decompose and the likeli-
hood that a large fraction of the HOCO radicals are formed
within this range of internal energy seems small.
1
997, 101, 6603.
1
G. Guelachvili and K. N. Rao, Handbook of Infrared Standards,
Academic Press, New York, 1986.
18 A. G. Maki and N. K. Wells, W avenumber Calibration T ables
from Heterodyne Frequency Measurements, NIST Special Pub-
lication, NIST/SP821, 1991.
In conclusion, our results have conÐrmed the multichannel
nature of the ultraviolet photodissociation of these two car-
boxylic acids and we have determined the relative yields in
three of these channels. We believe that studies of these pro-
cesses using pulsed lasers to produce and observe products
could provide fascinating insights into the photodissociation
dynamics of these species.
1
9
(a) H. Sauren, A. Winkler and P. Hess, Chem. Phys. L ett., 1995,
39, 313; (b) R. E. Kagarise, J. Chem. Phys., 1957, 27, 519; (c) W.
R. Feairheller, Jr. and J. E. Katon, Spectrochim. Acta, 1967, 23A,
225; (d) S. W. Charles, F. C. Cullen, N. L. Owen and G. A.
Williams, J. Mol. Struct., 1987 157, 17.
20 M. C. Osborne, PhD thesis, University of Birmingham, 1998.
2
2
2
1
F. Lepoutre, G. Louis and J. Taine, J. Chem. Phys., 1979, 70,
2
225.
We are grateful to EPSRC for a research grant and the award
of a studentship (M.C.O). Li Qiang thanks the Royal Society
and the Chinese Academy of Sciences for the award of a
China Royal Fellowship.
2
2
2
3
D. F. Eggers and B. L. Crawford, J. Chem. Phys. 1951, 19, 1554.
J. C. Stephenson, R. E. Wood and C. B. Moore, J. Chem. Phys.,
1
971, 54, 3097.
24 M. C. Osborne, Li Qiang and I. W. M. Smith, to be published.
H. Basch, M. B. Robin and N. A. Keubler, J. Chem. Phys., 1968,
9, 5007.
2
5
4
References
26 R. C. Millikan, J. Chem. Phys., 1963, 38, 2855.
2
2
7
8
D. J. Miller and R. C. Millikan, J. Chem. Phys., 1970, 53, 3384.
M. A. H. Smith, C. P. Rinsland, B. Fridovich and K. N. Rao, in
Molecular Spectroscopy: Modern Research, ed. K. N. Rao, Aca-
demic Press, New York, 1985, ch. 3.
1
(a) H. E. Radford, T. J. Sears and W. Wei, J. Chem. Phys., 1992,
9
7, 3989; (b) T. J. Sears, W. M. Fawzy and P. M. Johnson, J.
Chem. Phys., 1992, 97, 3996.
2
3
4
5
J. T. Petty and C. B. Moore, J. Chem. Phys., 1993, 99, 47; (b) J. T.
Petty and C. B. Moore, J. Mol. Spectrosc., 1993, 161, 149.
J. T. Petty, J. A. Harrison and C. B. Moore, J. Phys. Chem., 1993,
29
30
31
M. F. Arendt, P. W. Browning and L. J. Butler, J. Chem. Phys.,
1
995, 103, 11194.
B. Ruscic, M. Schwartz and J. Berkowitz, J. Chem. Phys., 1989,
9
7, 11194.
A. Miyoshi, H. Matsui and N. Washida, J. Chem. Phys., 1994,
00, 3532.
9
1, 6780.
M. J. Frost, P. Sharkey and I. W. M. Smith, Faraday Discuss.
Chem. Soc., 1991, 91, 305.
1
(a) I. W. M. Smith and R. Zellner, J. Chem. Soc., Faraday T rans.
2
, 1973, 69, 1616; (b) I. W. M. Smith, Chem. Phys. L ett., 1977, 49,
12; (c) J. Brunning, D. W. Derbyshire, I. W. M. Smith and M. D.
1
Paper 8/09064E
1454
Phys. Chem. Chem. Phys., 1999, 1, 1447È1454