Journal of the American Chemical Society
Communication
+
15
Cu species adsorbs the carbonyl group. The correlation in
ACKNOWLEDGMENTS
■
0
Figure 4 and Figure S5 indicates that Cu is the active site but
This research was supported by the Program for New Century
Excellent Talents in University (NCET-10-0611), the China
Postdoctoral Science Foundation (20090450090), the Seed
Foundation of Tianjin University (60303002), and the Program
of Introducing Talents of Discipline to Universities (B06006).
+
cannot rule out the role of Cu in a two-site mechanism.
However, it has been suggested that in methyl acetate
hydrogenation, Cu acts as the stabilizer of the methoxy and
acyl species, which are intermediates in DMO hydrogenation.
In addition, Cu sites could function as electrophilic or Lewis
acidic sites to polarize the CO bond via the electron lone
pair in oxygen, thus improving the reactivity of the ester group
+
15
+
REFERENCES
1) Goldemberg, J. Science 2007, 315, 808.
2) (a) Cleveland, C. J.; Hall, C. A. S.; Herendeen, R. A. Science 2006,
12, 1746. (b) Ragauskas, A. J.; Williams, C. K.; Davison, B. H.;
Britovsek, G.; Cairney, J.; Eckert, C. A.; Frederick, W. J.; Hallett, J. P.;
Leak, D. J.; Liotta, C. L.; Mielenz, J. R.; Murphy, R.; Templer, R.;
Tschaplinski, T. Science 2006, 311, 484.
3) Farrell, A. E.; Plevin, R. J.; Turner, B. T.; Jones, A. D.; O’Hare,
M.; Kammen, D. M. Science 2006, 311, 506.
4) (a) Choi, Y.; Liu, P. J. Am. Chem. Soc. 2009, 131, 13054.
b) Spivey, J. J.; Egbebi, A. Chem. Soc. Rev. 2007, 36, 1514. (c) Haider,
M. A.; Gogate, M. R.; Davis, R. J. J. Catal. 2009, 261, 9. (d) Pan, X.;
Fan, Z.; Chen, W.; Ding, Y.; Luo, H.; Bao, X. Nat. Mater. 2007, 6, 507.
(5) Subramani, V.; Gangwal, S. K. Energy Fuels 2008, 22, 814.
6) (a) Gao, X.; Zhao, Y.; Wang, S.; Yin, Y.; Wang, B.; Ma, X. Chem.
Eng. Sci. 2011, 66, 3513. (b) Gao, Z.; Liu, Z.; He, F.; Xu, G. J. Mol.
Catal. A: Chem. 2005, 235, 143.
(7) (a) Brands, D. S.; Poels, E. K.; Bliek, A. Appl. Catal., A 1999, 184,
79. (b) Sodesawa, T.; Nagacho, M.; Onodera, A.; Nozaki, F. J. Catal.
1986, 102, 460. (c) Kobayashi, H.; Takezawa, N.; Minochi, C. J. Catal.
981, 69, 487.
8) (a) Chen, L. F.; Guo, P. J.; Qiao, M. H.; Yan, S. R.; Li, H. X.;
Shen, W.; Xu, H. L.; Fan, K. N. J. Catal. 2008, 257, 172. (b) Yin, A. Y.;
Guo, X. Y.; Dai, W. L.; Fan, K. N. J. Phys. Chem. C 2009, 113, 11003.
■
(
(
8
b
0
in DMO. Therefore, it is very likely that Cu acts as the
primary active site, which is consistent with the hydrogenation
3
16
17
of dimethyl maleate, diethyl oxalate, and furfural and
1
8
+
crotonaldehyde, while the Cu species facilitates conversion
of intermediates.
Another interesting feature is the tunability of the products as
a function of reaction temperature (Figure 1). For example, a
high yield (ca. 95%) of EG can be obtained at a lower
temperature (e.g., 473 K). EG is an important chemical used in
a variety of industrial applications, such as antifreeze, polyester,
(
(
(
19
H energy, and fuel cells. At present, the technology of
ethylene oxidation/hydration accounts for the major share of
2
(
2
0
the EG market. As ethylene oxide is commercially produced
from ethylene via petroleum cracking, and the global market
demand for EG always surpasses its production capacity,
increasing efforts have been devoted to exploring alternative
processes. Therefore, this emerging synthetic route for the
main production of EtOH or EG from syngas using the same
catalytic system through control of the temperature (Scheme
S1) could become considerably significant and promising in
industry.
2
2
1
1
(
(
2
c) Guo, X. Y.; Yin, A. Y.; Dai, W. L.; Fan, K. N. Catal. Lett. 2009, 132,
2. (d) Yue, H.; Zhao, Y.; Zhao, L.; Lv, J.; Wang, S.; Gong, J.; Ma, X.
AIChE J. 2012, DOI: 10.1002/aic.12785.
In summary, we have demonstrated a facile and highly
efficient route for the synthesis of EtOH using low-cost Cu/
SiO catalysts prepared by the AEH method. The catalysts
(9) Huber, G. W.; Shabaker, J. W.; Dumesic, J. A. Science 2003, 300,
2075.
2
possess remarkable stability and efficiency, which could be
0
+
(10) (a) Burattin, P.; Che, M.; Louis, C. J. Phys. Chem. B 1998, 102,
ascribed to the coexistence of Cu and Cu primarily
originating from well-dispersed CuO NPs and copper
phyllosilicate, respectively. The correlation between the activity
2
722. (b) Toupance, T.; Kermarec, M.; Lambert, J.-F.; Louis, C. J.
Phys. Chem. B 2002, 106, 2277.
(11) Huang, Z.; Cui, F.; Xue, J.; Zuo, J.; Chen, J.; Xia, C. J. Phys.
Chem. C 2010, 114, 16104.
0
+
0
and the Cu and Cu site densities suggests that Cu is the
active site and primarily responsible for the activity of the
(
12) Gervasini, A.; Manzoli, M.; Martra, G.; Ponti, A.; Ravasio, N.;
Sordelli, L.; Zaccheria, F. J. Phys. Chem. B 2006, 110, 7851.
13) Marchi, A. J.; Fierro, J. L. G.; Santamaría, J.; Monzon
Catal., A 1996, 142, 375.
+
catalyst, while Cu facilitates the conversion of intermediates.
Moreover, the selectivity for EtOH and EG can be tuned
simply by regulating the reaction temperature. This indirect
synthetic methodology using inexpensive Cu-based catalysts
under facile conditions is a promising process that has the
potential to enable a sustainable EtOH and EG synthesis using
syngas from practical point of view.
(
́
, A. Appl.
(14) Van Der Grift, C. J. G.; Muldera, A.; Geusa, J. W. Appl. Catal.
1990, 60, 181.
(
(
15) Poels, E. K.; Brands, D. S. Appl. Catal., A 2000, 191, 83.
16) Mokhtar, M.; Ohlinger, C.; Schlander, J. H.; Turek, T. Chem.
Eng. Technol. 2001, 24, 423.
17) Xu, G.; Li, Y.; Li, Z.; Wang, H. Ind. Eng. Chem. Res. 1995, 34,
(
ASSOCIATED CONTENT
Supporting Information
Details of experimental procedures, catalyst characterization,
■
2371.
*
S
(18) Dandekar, A.; Baker, R. T. K.; Vannice, M. A. J. Catal. 1999,
184, 421.
(
19) (a) Celik, F. E.; Kim, T.; Bell, A. T. Angew. Chem. 2009, 121,
4907. (b) Cortright, R. D.; Davda, R. R.; Dumesic, J. A. Nature 2002,
18, 964. (c) Bianchini, C.; Shen, P. K. Chem. Rev. 2009, 109, 4183.
20) (a) Yin, A. Y.; Guo, X. Y.; Dai, W. L.; Fan, K. N. Chem.
TPR profiles, TEM images, PXRD patterns, XPS and FT-IR
0
+
spectra, and correlation of formation rate with the Cu and Cu
4
(
Commun. 2010, 46, 4348. (b) Lin, J.; Zhao, X.; Cui, Y.; Zhang, H.;
Liao, D. Chem. Commun. 2012, 48, 1177.
(21) Yue, H.; Zhao, Y.; Ma, X.; Gong, J. Chem. Soc. Rev. 2012, 41,
4218.
AUTHOR INFORMATION
Author Contributions
†
J.G. and H.Y. contributed equally.
Notes
The authors declare no competing financial interest.
1
3925
dx.doi.org/10.1021/ja3034153 | J. Am. Chem. Soc. 2012, 134, 13922−13925