15846 J. Phys. Chem., Vol. 100, No. 39, 1996
Wang et al.
(The evaluation of the data of ref 8 from 100% methanol yields
410 dm3 mol-1 s-1 for k13.) A similar chain reaction is observed
with the formate radical CO2•-, where the propagation rate
constant is about 5 times larger than in the present case.49 The
inset of Figure 3 demonstrates the rise of G(CH2O) beyond the
1
nonchain value of /2G(CH2O•-) ) 3 × 10-7 mol J-1 at a
methanol concentration of 0.01 M, under γ-radiolysis conditions
at high pH.
References and Notes
(1) Laroff, G. P.; Fessenden, R. W. J. Phys. Chem. 1973, 77, 1283.
(2) Asmus, K.-D.; Henglein, A.; Wigger, A.; Beck, G. Ber. Bunsen-
Ges. Phys. Chem. 1966, 70, 756.
(3) See, for instance: Heilbronner, E.; Bock, H. Das HMO-Modell
und seine Anwendung; Verlag Chemie: Weinheim, Germany, 1968.
(4) Phibbs, M. K.; Darwent, B. D. J. Chem. Phys. 1950, 18, 495.
(5) Barrett, J.; Baxendale, J. H. Trans. Faraday Soc. 1960, 56, 37.
(6) Dainton, F. S.; Fowles, P. Proc. R. Soc. London 1965, 287A, 295.
(7) Yang, N. C.; Tang, D. C. P.; Thap, D.-M.; Sallo, J. S. J. Am. Chem.
Soc. 1966, 88, 2851.
(8) Sherman, W. V. J. Phys. Chem. 1967, 71, 4245.
(9) Seki, H.; Nagai, R.; Imamura, M. Bull. Chem. Soc. Jpn. 1968, 41,
2877.
(10) Dainton, F. S.; Salmon, G. A.; Wardman, P. Proc. R. Soc. London
1969, 313A, 1.
(11) Johnson, D. W.; Salmon, G. A. J. Chem. Soc., Faraday Trans. 1
1975, 583.
(12) Johnson, D. W.; Salmon, G. A. Can. J. Chem. 1976, 55, 2030.
(13) Zimina, G. M.; Bakh, N. A. High Energy Chem. 1978, 12, 25.
(14) Johnson, D. W.; Salmon, G. A. J. Chem. Soc., Faraday Trans. 1
1979, 446.
(15) Grotheer, H. H.; Riekert, G.; Walter, D.; Just, T. Chem. Phys. Lett.
1988, 148, 530.
(16) Pagsberg, P.; Munk, J.; Sillesen, A. Chem. Phys. Lett. 1988, 146,
375.
(17) von Sonntag, C.; Schuchmann, H.-P. Methods Enzymol. 1994, 233,
3.
Figure 3. γ-Radiolysis of N2O-saturated aqueous solutions of methanol
(0.01 M) at pH 11.6; G(CH2O) as a function of the inverse of the square
root of the dose rate. The value obtained at the high dose rate of pulse
radiolysis (3 Gy µs-1) is indicated by the symbol 4. Inset: G(CH2O)
at the dose rate of 0.18 Gy s-1 as a function of pH.
The behavior of another simple radical anion, superoxide
O2•-, comes to mind which does not show a similar propensity
toward disproportionation. Its self-reaction is immeasurably
slow48 because there is no disproportionation while recombina-
tion is reversible on account of the very low strength of the
-O2-O2 bond.
-
Since the formation of hydroxymethyl takes place in the
presence of N2O, any possible interaction with this additive must
be taken into account. It is well-known that reducing radicals
can transfer an electron to N2O, albeit reacting much more
slowly than the solvated electron itself.8,49,50 The reducing
power of the •CH2OH radical is not strong enough to make this
reaction proceed at a noticeable rate under the present conditions,
but with the CH2O•- radical, a chain reaction (reactions 13 and
14)
(18) Kakac, B.; Vejdelek, Z. J. Handbuch der photometrischen Analyse;
Verlag Chemie: Weinheim, Germany, 1974; Vol. 1, (a) p 257, (b) p 67.
(19) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.;
Johnson, B. G.; Wong, M. W.; Foresman, J. B.; Robb, M. A.; Head-Gordon,
M.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley,
J. S.; Gonzales, C.; Martin, R. L.; Fox, D. J.; Defrees, D. J.; Baker, J.;
Stewart, J. J. P.; Pople, J. A. Gaussian 92/DFT, ReVision G.4; Gaussian
Inc.: Pittsburgh, PA, 1993.
CH2O•- + N2O f CH2O + N2 + O•-
(13)
(20) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys.
1980, 72, 650.
O
•- + CH3OH f •CH2OH + OH-
(14)
(21) Pople, J. A.; Nesbet, R. K. J. Chem. Phys. 1959, 22, 571.
(22) Roothaan, C. C. J. ReV. Mod. Phys. 1960, 32, 179.
(23) Moeller, C.; Plesset, M. S. Phys. ReV. 1934, 46, 618.
(24) Mulliken, R. S. (a) J. Chem. Phys. 1955, 23, 1833. (b) Ibid. 1955,
23, 1841. (c) Ibid. 1955, 23, 2338. (d) Ibid. 1955, 23, 2343. (e) Ibid. 1962,
36, 3428.
(25) von Sonntag, C. The Chemical Basis of Radiation Biology; Taylor
and Francis: London, 1987.
(26) Asmus, K.-D.; Mo¨ckel, H.; Henglein, A. J. Phys. Chem. 1973, 77,
1218.
(27) Buxton, G. V.; Greenstock, C. L.; Helman, W. P.; Ross, A. B. J.
Phys. Chem. Ref. Data 1988, 17, 513.
(28) Schuchmann, H.-P.; von Sonntag, C. J. Photochem. 1981, 16, 289.
(29) Gilbert, B. C.; Holmes, R. G. G.; Laue, H. A. H.; Norman, R. O.
C. J. Chem. Soc., Perkin Trans. 2 1976, 1047.
is clearly observable (cf. ref 8). O•- is the deprotonated form
of the OH radical (pKa ) 11.9) and is about equally reactive in
this system (cf. ref 27), so that reaction 13 represents the rate-
determining step.
In Figure 3, G(CH2O) in N2O-saturated aqueous solutions at
pH 11.6 has been plotted against the inverse of the square root
of the dose rate, according to expression 15, which relates the
rates of radical initiation, propagation, and termination under
the steady-state approximation (D′, dose rate in units of W
dm-3).
(30) Gilbert, B. C.; Holmes, R. G. G.; Norman, R. O. C. J. Chem. Res.
(S) 1977, 1.
(31) Berdnikov, V. M.; Bazhin, N. M.; Fedorov, V. K.; Polyakov, O.
V. Kinet. Catal. (Engl. Transl.) 1972, 13, 986.
1/2
G(CH2O•-)
G(CH2O) ) k13[N2O]
(15)
(
)
2k3D′
(32) Buxton, G. V. In Radiation Chemistry; Farhataziz, Rodgers, M.
A. J., Eds.; VCH Publishers: New York, 1987; p 321.
(33) Simic, M.; Neta, P.; Hayon, E. J. Phys. Chem. 1969, 73, 3794.
Expression 15 allows determination of k13, hitherto apparently
unknown.51 The intercept which corresponds to an “infinitely
high” steady-state concentration of CH2O•- radicals, directly
reflects the nonchain yield [G(CH2O) ) 3 × 10-7 mol J-1].
Essentially the same, nonchain value can be obtained directly,
applying the ionizing radiation at the relatively high (compared
to γ-radiolysis) dose rate of pulse radiolysis (3 Gy per 1 µs
pulse, triangle (4) in Figure 3). The slope of 2.9 × 10-7 mol
dm-3/2 s-1/2 J-1/2, upon appropriate substitution (i.e., [N2O] )
2.4 × 10-2 mol dm-3 and 2k3 ) 0.5 × 109 dm3 mol-1 s-1),
(34) Values previously reported: 2.4 × 109 dm3 mol-1 s-1 33
dm3 mol-1 s-1 in 100% methanol;11 1.44 × 109 dm3 mol-1 s-1 in 100%
methanol;12 2.8 × 109 dm3 mol-1 s-1 in 100% methanol;36 5.3 × 109 dm3
mol-1 s-1 in 100% di-tert-butylperoxide;37 5.5 × 109 dm3 mol-1 s-1 in
100% methanol.38
;
3.0 × 109
dm3 mol-1 s-1 35
;
1.4 × 109 dm3 mol-1 s-1 in 100% methanol;13 2.7 × 109
(35) Rabani, J.; Mulac, W. A.; Matheson, M. S. J. Phys. Chem. 1977,
81, 99.
(36) Getoff, N.; Ritter, A.; Schwo¨rer, F. J. Chem. Soc., Faraday Trans.
1 1983, 79, 2389.
(37) Paul, H.; Small, R. D.; Scaiano, J. C. J. Am. Chem. Soc. 1978,
100, 4520.
gives a propagation rate constant k13 of 350 dm3 mol-1 s-1
.