C O MMU N I C A T I O N S
Scheme 3 a
for a 3% yield of this byproduct, while E. coli BL21(DE3)/
pWN6.222A synthesized ethylene glycol (0.087 g/L) in 2% yield.
A key feature of the microbial synthesis of 1,2,4-butanetriol is
the substitution of a straightforward enzymatic reduction of an
aldehyde for the problematic catalytic reduction of a carboxylic
2
acid. The high H pressures and elevated temperatures required for
hydrogenation of malic acid are thus avoided. Byproduct formation
resulting from cleavage of carbon-carbon bonds is also substan-
tially reduced. Further metabolic engineering is clearly required to
increase product yields and concentrations. Nonetheless, microbial
catalysis is an intriguing alternative to catalytic hydrogenation for
the large-scale synthesis of 1,2,4-butanetriol needed for replacement
of nitroglycerin with 1,2,4-butanetriol trinitrate. The significance
of such a substitution is considerable given that nitroglycerin has
been used in industrial and military energetic materials since the
a
Plasmids (size): restriction enzyme maps. Sites are abbreviated as
follows: B ) BamHI, Bg ) BglII, E ) EcoRI, H ) HindIII, S ) ScaI.
Parentheses indicate that the designated enzyme site has been eliminated.
Lightface lines indicate vector DNA; boldface lines indicate insert DNA.
14
original dynamite formulations developed by Nobel.
1
2c
decarboxylases expressed by Zymomonas mobilis, Acetobacter
Acknowledgment. Research was funded by a contract from the
Office of Naval Research.
12d
12e
pasteurianus, Zymobacter palmae, and Saccharomyces cere-
Visiae.1
2f
Supporting Information Available: Hydrogenation of malic acid;
isolation of aadh and aatp; enzyme assays; microbial oxidation of
D-xylose and L-arabinose; microbial synthesis of D- and L-1,2,4-
butanetriol; enantiomer analysis (PDF). This material is available free
of charge via the Internet at http://pubs.acs.org.
Native dehydrogenase activity in E. coli was anticipated to be
adequate for the reduction of butanal 7a to D-1,2,4-butanetriol 1a
and butanal 7b to L-1,2,4-butanetriol 1b (Scheme 2). To test for
the needed dehydrogenase activity, intact E. coli DH5R/pWN5.238A
(
Scheme 3) expressing benzoylformate decarboxylase was incubated
in medium containing racemic D,L-3-deoxy-glycero-pentulosonic
acid. Accumulation of D,L-1,2,4-butanetriol indicated that E. coli
expressed the required dehydrogenase activity under aerobic culture
conditions.
References
(
1) CPIA/M3 Solid Propellant Ingredients Manual; The Johns Hopkins
University, Chemical Propulsion Information Agency: Whiting School
of Engineering, Columbia, MD, 2000.
(2) Cramer, R. J. Personal communication. Indian Head Division, Naval
Surface Warfare Division, Indian Head, Maryland, 2002.
With the required enzyme activities identified, E. coli constructs
were assembled for the conversions of D-xylonic acid 5a and
L-arabinonic acid 5b synthesized by P. fragi from D-xylose 4a and
L-arabinose 4b (Scheme 2). D-1,2,4-Butanetriol-synthesizing E. coli
DH5R/pWN6.186A (Scheme 3) carried a P. putida mdlC plasmid
insert encoding benzoylformate decarboxylase while relying on
native D-xylonate transport along with native D-xylonate dehydratase
and dehydrogenase activities. The required heterologous expression
of only a single gene was a consequence of E. coli catabolism of
D-xylonic acid. By contrast, L-1,2,4-butanetriol-synthesizing E. coli
BL21(DE3)/pWN6.222A (Scheme 3) carried the P. putida mdlC
plasmid insert encoding benzoylformate decaboxylase, a P. fragi
aadh plasmid insert encoding L-arabinonate dehydratase, and a P.
fragi aatp insert encoding an L-arabinonate transport protein.
Alcohol dehydrogenase activity was the only native E. coli enzyme
activity recruited for L-1,2,4-butanetriol synthesis.
Fermentor-controlled cultivation (1 L) of E. coli DH5R/
pWN6.186A at ambient pressure and 33 °C resulted in the
conversion of D-xylonic acid (10 g/L) into D-1,2,4-butanetriol (1.6
g/L) in 25% yield. Similar cultivation of E. coli BL21(DE3)/
pWN6.222A led to the conversion of L-arabinonic acid (10 g/L)
into L-1,2,4-butanetriol (2.4 g/L) in 35% yield. Stereochemical
assignments for microbe-synthesized products were based on the
conversion to Mosher esters and comparison with similarly deriva-
tized D- and L-1,2,4-butanetriol obtained from commercial sources.13
E. coli DH5R/pWN6.186A synthesized ethylene glycol (0.093 g/L)
(3) (a) Monteith, M. J.; Schofield, D.; Bailey, M. PCT Int. Appl. WO 98/
0
8793, 1998. (b) Ikai, K.; Mikami, M.; Furukawa, Y.; Ho, S. PCT Int.
Appl. WO 99/44976, 1999.
(4) (a) Adkins, H.; Billica, H. R. J. Am. Chem. Soc. 1948, 70, 3121. (b)
Mueller, H.; Mesch, W.; Broellos, K. U.S. Patent 4973769, 1990. (c)
Antons, S.; Tillling, A. S.; Wolters, E. U.S. Patent 6355848, 2002.
(
5) Szmant, H. H. Organic Building Blocks of the Chemical Industry; Wiley:
New York, 1989; p 362.
(6) (a) Zhang, Z.; Jackson, J. E.; Miller, D. J. Appl. Catal. A 2001, 219, 89.
(b) Jere, F. T.; Miller, D. J.; Jackson, J. E. Org. Lett. 2003, 5, 527.
(7) Chiral synthons can also be derived from 1,2,4-butanetriol enantiomers
and their biosynthetic precursors. See: (a) Wu, G.; Wong, Y. S.; Chen,
X.; Ding, Z. J. Org. Chem. 1999, 64, 3714. (b) Wu, G.-Z.; Chen, X.;
Wong, Y.-S.; Schumacher, D. P.; Steinman, M. U.S. Patent 5,886,171,
1999.
(
8) (a) Saulnier, L.; Marot, C.; Chanliaud, E.; Thibault, J.-F. Carbohydr.
Polym. 1995, 26, 279. (b) Micard, V.; Renard, C. M. G. C.; Thibault,
J.-F. Enzyme Microb. Technol. 1996, 19, 162.
9) (a) Buchert, J.; Viikari, L.; Linko, M.; Markkanen, P. Biotechnol. Lett.
1986, 8, 541. (b) Weimberg, R. J. Biol. Chem. 1961, 236, 629.
(
(
10) Dahms, A. S.; Donald, A. Methods Enzymol. 1982, 90, 302.
11) (a) Weimberg, R. J. Biol. Chem. 1959, 234, 727. (b) Schimz, K.-L.; Kurz,
G. Biochem. Soc. Trans. 1975, 3, 1087.
(
(
12) (a) Tsou, A. Y.; Ransom, S. C.; Gerlt, J. A. Biochemistry 1990, 29, 9856.
(
b) Brandl, M. T.; Lindow, S. E. Appl. EnViron. Microbiol. 1996, 62,
4
121. (c) Conway, T.; Osman, Y. A.; Konnan, J. I.; Hoffmann, E. M.;
Ingram, L. O. J. Bacteriol. 1987, 169, 949. (d) Raj, K. C.; Ingram, L. O.;
Maupin-Furlow, J. A. Arch. Microbiol. 2001, 176, 443. (e) Raj, K. C.;
Talarico, L. A.; Ingram, L. O.; Maupin-Furlow, J. A. Appl. EnViron.
Microbiol. 2002, 68, 2869. (f) Commercially available from Sigma.
13) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512.
14) Lindner, V. In Kirk-Othmer Encyclopedia of Chemical Technology;
Kroschwitz, J. I., Howe-Grant, M., Eds.; Wiley: New York, 1993; Vol.
10, p 46.
(
(
JA036391+
J. AM. CHEM. SOC.
9
VOL. 125, NO. 43, 2003 12999