ChemComm
Communication
CO2 conversion, the hydrogenation system needs to be further
optimized to improve the catalysis efficiency and a chromium-
free catalyst should also be developed. In fact, the relevant work
is currently underway in our laboratory.
This work was supported by the State Key Project of Funda-
mental Research for Nanoscience and Nanotechnology
(2011CB932401, 2011CBA00500, and 2012CB224802), and the
National Natural Science Foundation of China (21221062,
21131004, and 21390393).
Notes and references
1 W. Wang, S. P. Wang, X. B. Ma and J. L. Gong, Chem. Soc. Rev., 2011,
40, 3703.
2 F. Studt, I. Sharafutdinov, F. Abild-Pedersen, C. F. Elkjæer,
J. S. Hummelshøj, S. Dahl, I. Chorkendorff and J. K. Norskøv, Nat.
Chem., 2014, 6, 320.
3 F. Arena, G. Mezzatesta, G. Zafarana, G. Trunfio, F. Frusteri and
L. Spadaro, J. Catal., 2013, 300, 141.
4 F. L. Liao, Z. Y. Zeng, C. Eley, Q. Lu, X. L. Hong and S. C. E. Tsang,
Angew. Chem., Int. Ed., 2012, 51, 5832.
Fig. 3 XRD patterns of CuCr2O4 pretreated with H2 at 300 1C for 2 h (a),
recovered CuCr2O4 after the reaction (b), CuCr2O4-W (c), and recovered
CuCr2O4-W after the reaction (d) (K: XRD signals of Cu,19 ’: XRD signals
of the cubic spinel CuCr2O420).
5 F. L. Liao, Y. Q. Huang, J. W. Ge, W. R. Zheng, K. Tedsree, P. Collier,
X. L. Hong and S. C. Tsang, Angew. Chem., Int. Ed., 2011, 50, 2162.
6 J. B. Hansen and P. E. H. Nielsen, in Handbook of Heterogeneous Catalysis,
¨
ed. G. Ertl, H. Knozinger, F. Schu¨th and J. Weitkamp, Wiley-VCH,
Scheme 2 The chemical reaction for washing the metallic Cu species
formed during the H2 pretreatment.
Weinheim, 2008, p. 2920.
7 Z. B. Han, L. C. Rong, J. Wu, L. Zhang, Z. Wang and K. L. Ding,
Angew. Chem., Int. Ed., 2012, 51, 13041; K. L. Ding and Z. B. Han,
CN Pat., 103772142A, 2014.
8 Y. H. Li, K. Junge and M. Beller, ChemCatChem, 2013, 5, 1072.
9 H. Adkins and K. Folkers, J. Am. Chem. Soc., 1931, 53, 1095;
H. Adkins, B. Wojcik and L. W. Covert, J. Am. Chem. Soc., 1933,
55, 1669; U. Kreutzer, J. Am. Oil Chem. Soc., 1984, 61, 343; T. Turek,
D. L. Trimm and N. W. Cant, Catal. Rev.: Sci. Eng., 1996, 36, 645.
reduction process of the spinel CuCr2O4 plays an important
role in hydrogenation and hydrogenolysis reactions.21–24 In
order to investigate the situation for the selective hydrogena-
tion of EC over the copper chromite catalyst, we attempted to
remove the metallic Cu species by washing with an aqueous 10 Copper Chromite, Joint Committee on Powder Diffraction Standards
34-0424.
solution of FeCl3 (Scheme 2). The XPS spectrum (Fig. 2c) and
the XRD pattern (Fig. 3c) proved that the metallic Cu had been
11 A. M. Kawamoto, L. C. Pardini and L. C. Rezende, Aerosp. Sci.
Technol., 2004, 8, 591.
mostly removed. Over the catalyst without metallic Cu, the 12 O. V. Shutkina, O. A. Ponomareva, P. A. Kots and I. I. Ivanova,
Catal. Today, 2013, 218, 30.
13 D. Li, Q. Yu, S. S. Li, H. Q. Wan, L. J. Liu, L. Qi, B. Liu, F. Gao,
activity and selectivity for EC hydrogenation dropped drastically
(Table 1, entry 5), which indicated that the composite structure
L. Dong and Y. Chen, Chem. – Eur. J., 2011, 17, 5668.
of the metallic Cu and the cubic spinel CuCr2O4 generated 14 Y. S. Xia, H. X. Dai, L. Zhang, J. G. Deng, H. He and C. T. Au,
Appl. Catal., B, 2010, 100, 229.
15 M. Balaraju, V. Rekha, P. S. S. Prasad, R. B. N. Prasad and
during the H2 pretreatment were responsible for the high
catalytic activity and selectivity. The relevant investigations of
N. Lingaiah, Catal. Lett., 2008, 126, 119.
details of the mechanism, which are helpful for understanding 16 T. Miyazawa, Y. Kusunoki, K. Kunimori and K. Tomishige, J. Catal.,
2006, 240, 213.
the nature of the hydrogenation of EC and developing more
efficient catalysts, are undergoing in our laboratory.
17 M. A. Dasari, P. P. Kiatsimkul, W. R. Sutterlin and G. J. Suppes, Appl.
Catal., A, 2005, 281, 225.
In summary, a CuCr2O4 nanocatalyst was prepared based on 18 D. G. Lahr and B. H. Shanks, Ind. Eng. Chem. Res., 2003, 42, 5467.
19 Copper, Joint Committee on Powder Diffraction Standards 04-0836.
a hydrothermal method. The catalyst exhibited good catalytic
20 Copper Chromium Oxide, Joint Committee on Powder Diffraction
properties for selective hydrogenation of EC to methanol and
Standards 26-0509.
EG, with the selectivities of 60% and 93%, respectively. It was 21 O. V. Makarova, T. M. Yureva, G. N. Kustova, A. V. Ziborov, L. M.
Plyasova, T. P. Minyukova, L. P. Davydova and V. I. Zaikovskii, Kinet.
Catal., 1993, 34, 608.
22 O. V. Makarova, T. M. Yureva, L. M. Plyasova, T. A. Kriger and
found that the tetragonal spinel CuCr2O4 transformed to a
cubic spinel structure with some metallic Cu species, which
were responsible for the good catalytic performance of the
copper chromite catalyst, during H2 pretreatment. This is the
first step towards the heterogeneous selective hydrogenation of
EC. To achieve practical industrial application of the indirect
V. I. Zaikovskii, Kinet. Catal., 1994, 35, 371.
23 N. D. Kim, J. R. Park, D. S. Park, B. K. Kwak and J. Yi, Green Chem.,
2012, 14, 2638.
24 N. D. Kim, S. Oh, J. B. Joo, K. S. Jung and J. Yi, Top. Catal., 2010,
53, 517.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun.