Please do not adjust margins
Green Chemistry
Page 9 of 11
DOI: 10.1039/C5GC00810G
Green Chemistry
ARTICLE
Kniep, M. Tovar, R. W. Fischer, J. K. Nørskov and R.
Schlögl, Science, 2012, 336, 893ꢀ897.
10 T. Sakakura, J. C. Choi and H. Yasuda, Chem. Rev., 2007,
107, 2365ꢀ2387.
11 E. Balaraman, C. Gunanathan, J. Zhang, L. J. W. Shimon and
D. Milstein, Nat. Chem., 2011, 3, 609ꢀ614.
12 Z. Han, L. Rong, J. Wu, L. Zhang, Z. Wang and K. Ding,
Angew. Chem. Int. Ed., 2012, 51, 13041ꢀ13045.
13 M. Ito, T. Ootsuka, R. Watari, A. Shiibashi, A. Himizu and T,
Ikariya. J. Am. Chem. Soc., 2011, 133, 4240ꢀ4242.
14 P. A. Dub and T. Ikariya, ACS Catal. 2012, 2, 1718ꢀ1741.
15 X. Yang, ACS Catal., 2012, 2, 964ꢀ970.
16 S. H. Kim and S. H. Hong, ACS Catal., 2014, 4, 3630ꢀ3636.
17 T. vom Stein, M. Meuresch, D. Limper, M. Schmitz, M.
Hölscher, J. Coetzee, D. J. ColeꢀHamilton, J. Klankermayer
and W. Leitner, J. Am. Chem. Soc., 2014, 136, 13217ꢀ13225.
18 C. Lian, F. Ren, Y. Liu, G. Zhao, Y. Ji, H. Rong, W. Jia, L.
Ma, H. Lu, D. Wang and Y. Li, Chem. Commun., 2015, 51,
1252ꢀ1254.
Conclusions
In summary, we have demonstrated a facile and highly efficient
route for the synthesis of methanol and diols from CO2ꢀderived
organic carbonates using a simple CuꢀSiO2 nanocomposite
catalyst prepared by a precipitationꢀgel method. The catalysts
possessed remarkable stability in both batch and fixꢀbed
continuous flow reactors especially after promotion with B2O3.
The reaction was found to be sensitive to the Cu particle sizes,
surface acidꢀbasicity and Cu valence of the catalysts. The
cooperative effect of balanced Cu0 and Cu+ sites is suggested to
play a critical role for attaining high yields of methanol and
diols. This indirect synthetic methodology using Cuꢀbased
environmentally friendly heterogeneous catalysts under mild
conditions presents promising applications in the sustainable
production of methanol from CO2 with the coꢀproduction of
diols. Moreover, the important findings in this work also have
great implication for the development of efficient
heterogeneous catalysts for C=O hydrogenation and CꢀO
hydrogenolysis reactions.
19 Z. Huang, F. Cui, H. Kang, J. Chen, X. Zhang and C. Xia,
Chem. Mater., 2008, 20, 5090ꢀ5099.
20 Z. Huang, F. Cui, J. Xue, J. Zuo, J. Chen and C. Xia, J. Phys.
Chem. C, 2010, 114, 16104ꢀ16113.
Acknowledgements
The authors gratefully acknowledge the technical assistance
provided by Ms. Li He and Ms. Jiamei Liu for XRD and XPS
measurements and the financial support from the National Natural
Science Foundation of China (Grant No. 21133011, 21203221,
21473224) and the Natural Science Foundation of Gansu province
(1308RJZA281).
21 H. Liu, Z. Huang, C. Xia, Y. Jia, J. Chen and H. Liu,
ChemCatChem, 2014, 6, 2918ꢀ2928.
22 D. J. Thomas, J. T. Wehrli, M. S. Wainwright, D. L. Trimm
and N. W. Cant, Appl. Catal. A, 1992, 86, 101ꢀ114.
23 D. S. Brands, E. K. Poels and A. Bliek, Appl. Catal. A, 1999,
184, 279ꢀ289.
24 M. A. N. Santiago, M. A. SanchezꢀCastillo, R. D. Cortright
and J. A. Dumesic, J. Catal., 2000, 193, 16ꢀ28.
Notes and references
25 L. F. Chen, P. J. Guo, M. H. Qiao, S. R. Yan, H. X. Li, W.
Shen, H. L. Xu and K. N. Fan, J. Catal., 2008, 257, 172ꢀ180.
26 J. Gong, H. Yue, Y. Zhao, S. Zhao, L. Zhao, J. Lv, S. Wang
and X. Ma, J. Am. Chem. Soc., 2012, 134, 13922ꢀ13925.
27 P. Kasinathan, J. W. Yoon, D. W. Hwang, U. H. Lee, J. S.
Hwang, Y. K. Hwang and J. S. Chang, Appl. Catal. A, 2013,
451, 236ꢀ242.
28 H. Xie, S. Li and S. Zhang, J. Mol. Catal. A, 2006, 250, 30ꢀ
34.
29 C. J. G. Van Der Grift, A. F. H. Wielers, B. P. J. Joghi, J. Van
Beijnum, M. De Boer, M. VersluijsꢀHelder and J. W. Geus, J.
Catal., 1991, 131, 178ꢀ189.
30 Z. Huang, J. Chen, Y. Jia, H. Liu, C. Xia and H. Liu, Appl.
Catal. B, 2014, 147, 377ꢀ386.
31 H. Yue, Y. Zhao, S. Zhao, B. Wang, X. Ma and J. Gong, Nat.
Commun., 2013, 4, 2339ꢀ2345.
32 R. A. Van Santen. Acc. Chem. Res., 2009, 42, 57ꢀ66.
33 R. S. Rao, A. B. Walters and M. A. Vannice, J. Phys. Chem.
1
M. Meinshausen, N. Meinshausen, W. Hare, S. C. B. Raper,
K. Frieler, R. Knutti, D. J. Frame and M. R. Allen, Nature
,
2009, 458, 1158ꢀ1162.
2
3
A. Goeppert, M. Czaun, J.ꢀP. Jones, G. K. Surya Prakash and
G. A. Olah, Chem. Soc. Rev., 2014, 43, 7995ꢀ8048.
E. V. Kondratenko, G. Mul, J. Baltrusaitis, G. O. Larrazabal
and J. PerezꢀRamirez, Energy Environ. Sci., 2013, 6, 3112ꢀ
3135.
A. M. Appel, J. E. Bercaw, A. B. Bocarsly, H. Dobbek, D. L.
DuBois, M. Dupuis, J. G. Ferry, E. Fujita, R. Hille, P. J. A.
Kenis, C. A. Kerfeld, R. H. Morris, C. H. F. Peden, A. R.
Portis, S. W. Ragsdale, T. B. Rauchfuss, J. N. H. Reek, L. C.
Seefeldt, R. K. Thauer and G. L. Waldrop, Chem. Rev., 2013,
113, 6621ꢀ6658.
4
5
6
M. Aresta, A. Dibenedetto and A. Angelini, Chem. Rev.
2014, 114, 1709ꢀ1742.
,
G. A. Olah, A. Goeppert and G. K. S. Prakash, Beyond Oil
and Gas: The Methanol Economy, Second updated and
enlarged edition, WileyꢀVCH, Weinheim, Germany, Eds.,
2009, pp. 179ꢀ231.
B
, 2005, 109, 2086ꢀ2092.
34 Y. Zhu, X. Kong, X. Li, G. Ding, Y. Zhu and Y. W. Li, ACS
Catal., 2014, 4, 3612ꢀ3620.
35 Z. He, H. Q. Lin, P. He and Y. Z. Yuan, J. Catal. 2011, 277,
54ꢀ63.
36 A. Yin, X. Guo, W. L. Dai and K. Fan, J. Phys. Chem. C
2009, 113, 11003ꢀ11013.
7
8
9
W. Wang, S. Wang, X. Ma and J. Gong, Chem. Soc. Rev.
2011, 40, 3703ꢀ3727.
,
F. Liao, Z. Zeng, C. Eley, Q. Luꢁ, X. Hong and S. C. E. Tsang,
Angew. Chem. Int. Ed., 2012, 51, 5832ꢀ5836.
M. Behrens, F. Studt, I. Kasatkin, S. Kühl, M. Hävecker, F.
AbildꢀPedersen, S. Zander, F. Girgsdies, P. Kurr, B. L.
This journal is © The Royal Society of Chemistry 2015
Green Chem., 2015, 00, 1-3 | 9
Please do not adjust margins