1
816ꢀ
JunyingꢀZhangꢀetꢀal.ꢀ/ꢀChineseꢀJournalꢀofꢀCatalysisꢀ35ꢀ(2014)ꢀ1811–1817ꢀ
Referencesꢀ
75
60
45
30
15
Glucose
Cellobiose
[1] AlonsoꢀDꢀM,ꢀBondꢀJꢀQ,ꢀDumesicꢀJꢀA.ꢀGreenꢀChem,ꢀ2010,ꢀ12:ꢀ1493ꢀ
[2] HuberꢀGꢀW,ꢀIborraꢀS,ꢀCormaꢀA.ꢀChemꢀRev,ꢀ2006,ꢀ106:ꢀ4044ꢀ
[
3] CormaꢀA,ꢀIborraꢀS,ꢀVeltyꢀA.ꢀChemꢀRev,ꢀ2007,ꢀ107:ꢀ2411ꢀ
4] DhepeꢀPꢀL,ꢀFukuokaꢀA.ꢀChemSusChem,ꢀ2008,ꢀ1:ꢀ969ꢀ
[
[5] YuꢀY,ꢀLouꢀX,ꢀWuꢀHꢀW.ꢀEnergyꢀFuels,ꢀ2008,ꢀ22:ꢀ46ꢀ
[
[
[
6] StöckerꢀM.ꢀAngewꢀChemꢀIntꢀEd,ꢀ2008,ꢀ47:ꢀ9200ꢀ
7] RinaldiꢀR,ꢀSchüthꢀF.ꢀEnergyꢀEnvironꢀSci,ꢀ2009,ꢀ2:ꢀ610ꢀ
8] ZhouꢀCꢀ H,ꢀ Xiaꢀ X,ꢀ LinꢀCꢀX,ꢀTongꢀ Dꢀ S,ꢀ BeltraminiꢀJ.ꢀ ChemꢀSocꢀRev,ꢀ
2011,ꢀ40:ꢀ5588ꢀ
[9] Kobayashiꢀ H,ꢀ Komanoyaꢀ T,ꢀ Guhaꢀ Sꢀ K,ꢀ Haraꢀ K,ꢀ Fukuokaꢀ A.ꢀ Applꢀ
CatalꢀA,ꢀ2011,ꢀ409‐410:ꢀ13ꢀ
10] GallezotꢀP.ꢀChemꢀSocꢀRev,ꢀ2012,ꢀ41:ꢀ1538ꢀ
11] WangꢀYꢀL,ꢀDengꢀWꢀP,ꢀWangꢀBꢀJ,ꢀZhangꢀQꢀH,ꢀWanꢀXꢀY,ꢀTangꢀZꢀC,ꢀ
WangꢀY,ꢀZhuꢀC,ꢀCaoꢀZꢀX,ꢀWangꢀGꢀC,ꢀWanꢀHꢀL.ꢀNatꢀCommun,ꢀ2013,ꢀ4:ꢀ
4
20
440
460
480
500
520
[
Temperature (K)
[
Fig.ꢀ5.ꢀEthyleneꢀglycolꢀyieldsꢀatꢀ100%ꢀcellobioseꢀorꢀglucoseꢀconversion
asꢀaꢀfunctionꢀofꢀtemperature.ꢀReactionꢀconditions:ꢀ0.10ꢀgꢀH WO ,ꢀ0.30ꢀgꢀ
Ru/AC,ꢀ6ꢀMPaꢀH ,ꢀstirringꢀspeedꢀ1000ꢀr/min.ꢀ
2
4
2
141ꢀ
12] MaꢀJꢀP,ꢀYuꢀWꢀQ,ꢀWangꢀM,ꢀJiaꢀXꢀQ,ꢀLuꢀF,ꢀXuꢀJ.ꢀChinꢀJꢀCatal,ꢀ2013,ꢀ34:ꢀ
92ꢀ
2
[
[
4
13] ZhaoꢀC,ꢀKouꢀY,ꢀLemonidouꢀAꢀA,ꢀLiꢀXꢀB,ꢀLercherꢀJꢀA.ꢀAngewꢀChemꢀIntꢀ
Ed,ꢀ2009,ꢀ48:ꢀ3987ꢀ
theꢀC–Cꢀbondꢀcleavageꢀreactionꢀofꢀglucoseꢀisꢀmuchꢀeasierꢀthanꢀ
thatꢀofꢀcellobiose.ꢀNevertheless,ꢀwithꢀtheꢀincreasingꢀofꢀreactionꢀ
time,ꢀtheꢀEGꢀyieldꢀfromꢀcellobioseꢀconversionꢀsurpassesedꢀthatꢀ
fromꢀglucose.ꢀMoreover,ꢀwithꢀanꢀincreaseꢀofꢀtheꢀreactionꢀtemper‐
ature,ꢀtheꢀintersectingꢀpointꢀofꢀtheꢀEGꢀyieldsꢀofꢀglucoseꢀandꢀcello‐
bioseꢀshiftedꢀtoꢀaꢀshorterꢀreactionꢀtimeꢀ(Fig.ꢀ4(b)–(f)),ꢀsuggestingꢀ
thatꢀaꢀhigherꢀtemperatureꢀisꢀmoreꢀfavorableꢀforꢀtheꢀretro‐aldolꢀ
condensationꢀofꢀcellobioseꢀinꢀcomparisonꢀwithꢀthatꢀofꢀglucose.ꢀAtꢀ
eachꢀtemperature,ꢀtheꢀfinalꢀEGꢀyieldꢀatꢀ100%ꢀconversionꢀofꢀcello‐
bioseꢀwasꢀalwaysꢀhigherꢀthanꢀthatꢀofꢀglucose,ꢀandꢀtheꢀdifferenceꢀ
becameꢀ largerꢀ atꢀ higherꢀ temperatureꢀ (Fig.ꢀ 5.).ꢀ Thisꢀ canꢀ beꢀ ex‐
plainedꢀbyꢀtheꢀslowꢀretro‐aldolꢀcondensationꢀofꢀcellobioseꢀasꢀwellꢀ
asꢀ slowꢀ releaseꢀ ofꢀ glucoseꢀ fromꢀ theꢀ hydrolysisꢀ ofꢀ cellobiose,ꢀ
whichꢀisꢀbetterꢀmatchedꢀwithꢀtheꢀsubsequentꢀhydrogenationꢀofꢀ
GA.ꢀ Onꢀ extrapolatingꢀ thisꢀ toꢀ celluloseꢀ conversion,ꢀ thisꢀ trendꢀ
wouldꢀholdꢀifꢀtheꢀhydrolysisꢀofꢀcelluloseꢀisꢀmuchꢀmoreꢀdifficultꢀ
thanꢀ cellobioseꢀ andꢀ theꢀ resultingꢀ glucoseꢀ concentrationꢀ inꢀ theꢀ
solutionꢀisꢀmuchꢀlower,ꢀi.e.,ꢀtheꢀEGꢀyieldꢀwouldꢀfollowꢀtheꢀorderꢀofꢀ
celluloseꢀ >ꢀ celloligosaccharidesꢀ >ꢀ glucose.ꢀ However,ꢀ thisꢀ trendꢀ
[
14] AlonsoꢀDꢀM,ꢀBondꢀJꢀQ,ꢀDumesicꢀJꢀA.ꢀGreenꢀChem,ꢀ2010,ꢀ12:ꢀ1493ꢀ
15] PengꢀBꢀX,ꢀYuanꢀXꢀG,ꢀZhaoꢀC,ꢀLercherꢀJꢀA.ꢀJꢀAmꢀChemꢀSoc,ꢀ2012,ꢀ134:ꢀ
[
9400ꢀ
[16] LiꢀGꢀY,ꢀLiꢀN,ꢀLiꢀSꢀS,ꢀWangꢀAꢀQ,ꢀCongꢀY,ꢀWangꢀXꢀD,ꢀZhangꢀT.ꢀChemꢀ
Commun,ꢀ2013,ꢀ49:ꢀ5727ꢀ
[17] YangꢀJꢀF,ꢀLiꢀN,ꢀLiꢀGꢀY,ꢀWangꢀWꢀT,ꢀWangꢀAꢀQ,ꢀWangꢀXꢀD,ꢀCongꢀY,ꢀ
ZhangꢀT.ꢀChemSusChem,ꢀ2013,ꢀ6:ꢀ1149ꢀ
[18] WangꢀS,ꢀLiuꢀHꢀC.ꢀChinꢀJꢀCatal,ꢀ2014,ꢀ35:ꢀ631ꢀ
[19] ZhangꢀXꢀC,ꢀWangꢀM,ꢀWangꢀYꢀH,ꢀZhangꢀCꢀF,ꢀZhangꢀZ,ꢀWangꢀF,ꢀXuꢀJ.ꢀ
ChinꢀJꢀCatal,ꢀ2014,ꢀ35:ꢀ703ꢀ
[20] DongꢀXꢀL,ꢀXueꢀS,ꢀZhangꢀJꢀL,ꢀHuangꢀW,ꢀZhouꢀJꢀN,ꢀChenꢀZꢀA,ꢀYuanꢀDꢀH,ꢀ
XuꢀYꢀP,ꢀLiuꢀZꢀM.ꢀChinꢀJꢀCatal,ꢀ2014,ꢀ35:ꢀ684ꢀ
[
21] XiaoꢀZꢀH,ꢀJinꢀSꢀH,ꢀPangꢀM,ꢀLiangꢀCꢀH.ꢀGreenꢀChem,ꢀ2013,ꢀ15:ꢀ891ꢀ
22] KomanoyaꢀT,ꢀKobayashiꢀH,ꢀHaraꢀK,ꢀChunꢀWꢀJ,ꢀFukuokaꢀA.ꢀChem‐
CatChem,ꢀ2014,ꢀ6:ꢀ230ꢀ
[
[23] JiꢀN,ꢀZhangꢀT,ꢀZhengꢀMꢀY,ꢀWangꢀAꢀQ,ꢀWangꢀH,ꢀWangꢀXꢀD,ꢀChenꢀJꢀG.ꢀ
AngewꢀChemꢀIntꢀEd,ꢀ2008,ꢀ47:ꢀ8510ꢀ
[24] ZhangꢀYꢀH,ꢀWangꢀAꢀQ,ꢀZhangꢀT.ꢀChemꢀCommun,ꢀ2010,ꢀ46:ꢀ862ꢀ
[25] ZhengꢀMꢀY,ꢀWangꢀAꢀQ,ꢀJiꢀN,ꢀPangꢀJꢀF,ꢀWangꢀXꢀD,ꢀZhanꢀT.ꢀChemSus‐
Chem,ꢀ2010,ꢀ3:ꢀ63ꢀ
canꢀbeꢀchangedꢀbyꢀtuningꢀtheꢀratioꢀofꢀH
2
WO ꢀtoꢀRu/Cꢀasꢀwellꢀasꢀ
4
[
[
[
[
[
26] ZhaoꢀGꢀH,ꢀZhengꢀMꢀY,ꢀWangꢀAꢀQ,ꢀZhangꢀT.ꢀChinꢀJꢀCatal,ꢀ2010,ꢀ31:ꢀ
28ꢀ
27] PangꢀJꢀF,ꢀZhengꢀMꢀY,ꢀWangꢀAꢀQ,ꢀZhangꢀT.ꢀIndꢀEngꢀChemꢀRes,ꢀ2011,ꢀ
0:ꢀ6601ꢀ
28] LiꢀCꢀZ,ꢀZhengꢀMꢀY,ꢀWangꢀAꢀQ,ꢀZhangꢀT.ꢀEnergyꢀEnvironꢀSci,ꢀ2012,ꢀ5:ꢀ
383ꢀ
29] JiꢀN,ꢀZhengꢀMꢀY,ꢀWangꢀAꢀQ,ꢀZhangꢀT,ꢀChenꢀJꢀG.ꢀChemSusChem,ꢀ2012,ꢀ
:ꢀ939ꢀ
byꢀoptimizingꢀtheꢀreactionꢀconditionsꢀ[34].ꢀ
9
4.ꢀ ꢀ Conclusionsꢀ
5
Fromꢀanꢀinvestigationꢀofꢀtheꢀhydrogenolysisꢀofꢀcellobioseꢀtoꢀ
6
EG,ꢀweꢀelucidatedꢀtheꢀreactionꢀpathwaysꢀinꢀwhichꢀhydrogena‐
tion,ꢀ hydrolysisꢀ andꢀ retro‐aldolꢀ condensationꢀ occurredꢀ simul‐
taneously.ꢀDFTꢀcalculationsꢀsuggestedꢀthatꢀtheꢀretro‐aldolꢀcon‐
densationꢀofꢀaldosesꢀatꢀtheꢀreducingꢀendꢀpromotedꢀtheꢀhydrol‐
ysisꢀofꢀtheꢀβ‐1,4‐glycosidicꢀbond.ꢀTheꢀcomparisonꢀofꢀtheꢀcello‐
bioseꢀ andꢀ glucoseꢀ reactionsꢀ showedꢀ thatꢀ theꢀ retro‐aldolꢀ con‐
densationꢀ ofꢀ cellobioseꢀ isꢀ moreꢀ difficultꢀ thanꢀ thatꢀ ofꢀ glucose,ꢀ
whichꢀloweredꢀtheꢀformationꢀrateꢀofꢀglycolaldehydeꢀandꢀmadeꢀ
itꢀmoreꢀmatchedꢀwithꢀtheꢀsubsequentꢀhydrogenationꢀrate,ꢀthusꢀ
leadingꢀtoꢀincreasedꢀyieldꢀofꢀEGꢀfromꢀcellobiose.ꢀThisꢀtrendꢀcanꢀ
beꢀextrapolatedꢀtoꢀcellulose.ꢀThisꢀstudyꢀprovidedꢀusefulꢀinfor‐
mationꢀforꢀtheꢀmechanisticꢀunderstandingꢀofꢀcelluloseꢀconver‐
sionꢀtoꢀEGꢀandꢀwillꢀguideꢀtheꢀdesignꢀofꢀmoreꢀefficientꢀandꢀselec‐
tiveꢀcatalystꢀformulations.ꢀ
5
30] TaiꢀZꢀJ,ꢀZhangꢀJꢀY,ꢀWangꢀAꢀQ,ꢀZhengꢀMꢀY,ꢀZhangꢀT.ꢀChemꢀCommun,ꢀ
2012,ꢀ48:ꢀ7052ꢀ
[31] Taiꢀ Zꢀ J,ꢀ Zhangꢀ Jꢀ Y,ꢀ Wangꢀ Aꢀ Q,ꢀ Pangꢀ Jꢀ F,ꢀ Zhengꢀ Mꢀ Y,ꢀ Zhangꢀ T.ꢀ
ChemSusChem,ꢀ2013,ꢀ6:ꢀ652ꢀ
[32] WangꢀAꢀQ,ꢀZhangꢀT.ꢀAccꢀChemꢀRes,ꢀ2013,ꢀ46:ꢀ1377ꢀ
[33] ZhouꢀLꢀK,ꢀPangꢀJꢀF,ꢀWangꢀAꢀQ,ꢀZhangꢀT.ꢀChinꢀJꢀCatal,ꢀ2013,ꢀ34:ꢀ2041ꢀ
[34] ZhaoꢀGꢀH,ꢀZhengꢀMꢀY,ꢀZhangꢀJꢀY,ꢀWangꢀAꢀQ,ꢀZhangꢀT.ꢀIndꢀEngꢀChemꢀ
Res,ꢀ2013,ꢀ52:ꢀ9566ꢀ
[
[
[
[
[
35] ZhengꢀMꢀY,ꢀPangꢀJꢀF,ꢀWangꢀAꢀQ,ꢀZhangꢀT.ꢀChinꢀJꢀCatal,ꢀ2014,ꢀ35:ꢀ602ꢀ
36] LiuꢀY,ꢀLuoꢀC,ꢀLiuꢀHꢀC.ꢀAngewꢀChemꢀIntꢀEd,ꢀ2012,ꢀ51:ꢀ3249ꢀ
37] HuangꢀYꢀB,ꢀFuꢀY.ꢀGreenꢀChem,ꢀ2013,ꢀ15:ꢀ1095ꢀ
38] SongꢀJꢀL,ꢀFanꢀHꢀL,ꢀMaꢀJ,ꢀHanꢀBꢀX.ꢀGreenꢀChem,ꢀ2013,ꢀ15:ꢀ2619ꢀ
39] KabyemelaꢀBꢀM,ꢀTakigawaꢀM,ꢀAdschiriꢀT,ꢀMalaluanꢀRꢀM,ꢀAraiꢀK.ꢀIndꢀ