of reduced samples were recorded on a Rigaku D/max 2500
2 J. Sabadie, D. Barthomeuf, H. Charcosset and G. Descotes, Bull. Soc.
Chim. Fr., 1981, 7–8, 288.
3 A. Wawrzetz, B. Peng, A. Hrabar, A. Jentys, A. A. Lemonidou and
J. A. Lercher, J. Catal., 2010, 269, 411.
˚
X-ray diffractometer (Cu-Ka, l = 1.54178 A). TEM images were
acquired using a FEI Tecnai G2 high-resolution transmission
electron microscope operating at 200 kV. X-ray photoelectron
spectroscopy (XPS) analysis of the catalysts was carried out
using a Kratos Axis Ultra DLD spectrometer employing a
monochromatic Al-Ka source, hybrid magnetic/electrostatic
optics, and a multi-channel plate and delay line detector (DLD).
The surface of the samples was etched with Ar+ ions for
10 min prior to removing the oxidized layer. The specific surface
areas, average pore volume, and pore size distribution were
measured by N2 adsorption/desorption with the BET method
on a Microneritics ASAP 2010 C analyzer. The dispersion of
metal crystallites Ru was measured using H2 chemisorption
(ASAP2020, Micromeritics) at 40 ◦C and 5.0–50 kPa. Samples
were first treated in pure H2 for 1 h at 300 ◦C and then in a
dynamic vacuum for 1 h at 300 ◦C. The Cu metal dispersion was
4 S. Wang, Y. Zhang and H. C. Liu, Chem. Asian J., 2010, 5, 1100.
5 (a) M. Balaraju, V. Rekha, P. S. S. Prasad, R. B. N. Prasad and N.
Lingaiah, Catal. Lett., 2008, 126, 119; (b) L. Huang, Y. L. Zhu, H. Y.
Zheng, Y. W. Li and Z. Y. Zeng, J. Chem. Technol. Biotechnol., 2008,
83, 1670–1675; (c) Z. W. Huang, F. Cui, H. X. Kang, J. Chen and C.
G. Xia, Appl. Catal. A, 2009, 366, 288; (d) L. Y. Guo, J. X. Zhou, J.
B. Mao, X. W. Guo and S. G. Zhang, Appl. Catal. A, 2009, 367, 93;
(e) S. Sato, M. Akiyama, K. Inui and M. Yokota, Chem. Lett., 2009,
38, 560; (f) Q. J. Yu, X. H. Ma, Z. Lan, M. Z. Wang and C. J. Yu,
J. Phys. Chem. C, 2009, 113, 6969; (g) A. Bienholz, F. schwab and P.
Claus, Green Chem., 2010, 12, 290.
6 (a) J. Barbier, J. C. Menezo, C. Montassier, J. Naja, G. D. Angel
and J. M. Dominguez, Catal. Lett., 1992, 14, 37; (b) C. Montassier,
J. C. Menezo, J. Moukolo, J. Naja, L. C. Hoang, J. Barbier and J.
P. Boitiaux, J. Mol. Catal., 1991, 70, 65; (c) C. Montassier, J. C.
Menezo, L. C. Hoang, C. Renaud and J. Barbier, J. Mol. Catal.,
1991, 70, 99; (d) C. Montassier, J. C. Menezo, J. Naja, J. Barbier, J.
M. Dominguez, P. Sarrazin and B. Didillon, J. Mol. Catal., 1994, 91,
107; (e) C. Montassier, J. C. Menezo, J. Naja, J. Barbier, J. M. Domin-
guez, P. Sarrazin and B. Didillon, J. Mol. Catal., 1994, 91, 119.
7 (a) C. H. Liang, Z. Q. Ma, L. Ding and J. S. Qiu, Catal. Lett., 2009,
130, 169; (b) N. D. Kim, S. Oh, J. B. Joo, K. S. Jung and J. Yi,
Top. Catal., 2010, 53, 517; (c) R. B. Mane, A. M. Hengne, A. A.
Ghalwadkar, S. Vijayanand, P. H. Mohite, H. S. Potdar and C. V.
Rode, Catal. Lett., 2010, 135, 141; (d) J. X. Zhou, L. Y. Guo, X. W.
Guo, J. B. Mao and S. G. Zhang, Green Chem., 2010, 12, 1835.
8 (a) E. P. Maris and R. J. Davis, J. Catal., 2007, 249, 328; (b) T.
Miyazawa, S. Koso, K. Kunimori and K. Tomishige, Appl. Catal.
A, 2007, 329, 30; (c) T. Miyazawa, S. Koso, K. Kunimori and K.
Tomishige, Appl. Catal. A, 2007, 318, 244; (d) M. Balaraju, V. Rekha,
B. Devi, R. B. N. Prasad, P. S. S. Prasad and N. Lingaiah, Appl. Catal.
A, 2010, 384, 107; (e) L. Zhao, J. H. Zhou, Z. J. Sui and X. G. Zhou,
Chem. Eng. Sci., 2010, 65, 30.
9 (a) E. P. Maris, W. C. Ketchie, M. Murayama and R. J. Davis, J.
Catal., 2007, 251, 281; (b) L. Ma and D. H. He, Top. Catal., 2009,
52, 834.
10 T. Jiang, Y. X. Zhou, S. G. Liang, H. Z. Liu and B. X. Han, Green
Chem., 2009, 11, 1000.
11 (a) Z. J. Wu, M. H. Zhang, Z. F. Zhao, W. Li and K. Y. Tao, J. Catal.,
2008, 256, 323; (b) Z. F. Zhao, Z. J. Wu, L. X. Zhou, M. H. Zhang,
W. Li and K. Y. Tao, Catal. Commun., 2008, 9, 2191; (c) Z. J. Wu, Z.
F. Zhao and M. H. Zhang, ChemCatChem, 2010, 2, 1606.
12 L. Chen, A. C. cooper, G. P. Pez and H. S. Cheng, J. Phys. Chem. C,
2007, 111, 18995.
13 (a) J. M. Planeix, N. Coustel, J. Coq, V. Brotons, P. S. Kumbhar,
R. Dutartre, P. Geneste, P. Bernier and P. M. Ajayan, J. Am. Chem.
Soc., 1994, 116, 7935; (b) A. J. Lachawiec Jr., G. Qi and R. T. Yang,
Langmuir, 2005, 21, 11418.
◦
measured by the CO chemisorptions at 40 C and 5.0–50 kPa.
Metal dispersions were calculated by assuming H/Rus = 1 and
CO/Cus = 1 stoichiometries. Mean cluster sizes were estimated
from these dispersions by assuming spherical structures and
values for the atomic density in bulk Ru (13.65 ¥ 10-3 nm3)
and Cu (11.83 ¥ 10-3 nm3).22
Glycerol hydrogenolysis
The glycerol hydrogenolysis reaction was carried out in a 100 mL
stainless steel autoclave at a stirring speed of 800 rpm. 16 g
glycerol diluted with 4 mL deionized water (80 wt.% glycerol
in the aqueous solution) and 0.8 g catalyst was added to the
autoclave. The reactor was sealed and purified repeatedly with
hydrogen to eliminate air. Then the reactor was heated to the
reaction temperature (200 ◦C) and pressurized to 4.0 MPa. After
6 h, the reactor was cooled to room temperature. The liquid-
phase products were analyzed by a gas chromatograph with a
capillary column PEG 20 M (40 m ¥ 3 mm ¥ 0.25 mm) and a
flame ionization detector (FID). The gas products were detected
by using a thermal conductivity detector (TCD). Conversion of
glycerol is defined as the ratio of the number of moles of glycerol
consumed in the reaction to the total moles of glycerol initially
added. Yield of liquid product is defined as the ratio of the num-
ber of moles of glycerol consumed to produce the liquid product
to the number of moles of converted glycerol. The composition
of liquid product was calculated based on the number of C-based
moles of each component in the liquid product.
14 Y Lin, K. A. Watson, M. J. Fallbach, S. Ghose, J. G. Smith Jr., D. M.
Delozier, W. Cao, R. E. Crooks and J. W. Connell, ACS Nano, 2009,
3, 871.
15 R. Koetz, H. J. Lewrenz and S. Stucki, J. Electrochem. Soc., 1983,
130, 825.
16 J. Hedman, M. Klasson, R. Nilsson, C. Nordling, M. F. Sorokina,
O. I. Kljushnikov, S. A. Nemnonov, V. A. Trapeznikov and V. G.
Zyranov, Phys. Scr., 1971, 4, 195.
Acknowledgements
17 A. Marinoiu, G. Ionita, C. L. Ga´spa´r, C. Cobzaru and S. Oprea,
React. Kinet. Catal. Lett., 2009, 97, 315.
18 T. Miyazawa, S. Koso, K. Kunimori and K. Tomishige, Appl. Catal.
A, 2007, 18, 244.
The present work was supported by the Natural Sciences
Foundation of Tianjin (10JCYBJC04400) and MOE (IRT-
0927).
19 Q. B. Zhang, J. P. Xie, J. Y. Lee, J. X. Zhang and C. Boothroyd, Small,
2008, 4, 1067.
20 (a) Z. J. Wu, S. H. Ge, M. H. Zhang, W. Li, S. C. Mu and K. Y. Tao,
J. Phys. Chem. C, 2007, 111, 8587; (b) Z. J. Wu, M. H. Zhang, W. Li,
S. C. Mu and K. T. Tao, J. Mol. Catal. A, 2007, 273, 277.
21 T. Inui, Y. Ono, Y. Takagi and J. b. Kim, Appl. Catal. A, 2000, 202,
215.
22 G. Bergeret and P. Gallezot, ‘Character 3.1.2 Particle Size and
Dispersion Measurements’, in Handbook of Heterogeneous Catalysis,
ed. G. Ertl, H. Knozinger, F. Schuth and J. Weitkamp, Wiley-VCH,
2008, pp. 738–745.
References
1 (a) J. N. Chheda, G. W. Huber and J. A. Dumesic, Angew. Chem.,
Int. Ed., 2007, 46, 7164; (b) C. H. Zhou, J. N. Beltramini, Y. X. Fan
and G. Q. Lu, Chem. Soc. Rev., 2008, 37, 527; (c) A. Brandner, K.
Lehnert, A. Bienholz, M. Lucas and P. Claus, Top. Catal., 2009, 52,
278; (d) D. A. Simonetti and J. A. Dumesic, Catal. Rev. Sci. Eng.,
2009, 51, 441; (e) Y. Gu and F. Je´roˆme, Green Chem., 2010, 12, 1127;
(f) F. Je´roˆme, Y. Pouilous and J. Barrault, ChemSusChem, 2010, 1,
586.
1316 | Green Chem., 2011, 13, 1311–1316
This journal is
The Royal Society of Chemistry 2011
©