COMMUNICATIONS
Gas–Liquid Segmented Flow Microfluidics for Screening
sure is safely increased by using pressurised molecular
oxygen and microreactor technology.
b) B. L. Ryland, S. S. Stahl, Angew. Chem. 2014, 126,
968–8983; Angew. Chem. Int. Ed. 2014, 53, 8824–8838.
5] M. F. Semmelhack, C. R. Schmid, D. A. Cortes, C. S.
8
[
Chou, J. Am. Chem. Soc. 1984, 106, 3374–3376.
[
6] a) P. Gamez, I. W. C. E. Arends, J. Reedijk, R. A. Shel-
don, Chem. Commun. 2003, 2414–2415; b) P. Gamez,
I. W. C. E. Arends, R. A. Sheldon, J. Reedijk, Adv.
Synth. Catal. 2004, 346, 805–811.
Experimental Section
Typical Reaction Conditions with Cu(I)
[
7] E. T. T. Kumpulainen, A. M. P. Koskinen, Chem. Eur. J.
[
5
Cu(I)(CH CN) ]OTf (189 mg, 5 mol%), bpy (47 mg,
mol%) and NMI (50 mg, 10 mol%) were dissolved in
3 4
2
009, 15, 10901–10911.
CH CN (15 mL, 11.79 g). Then, TEMPO (47 mg, 5 mol%)
and benzyl alcohol (0.65 g, 0.4M) were added to the solu-
tion that should be used promptly.
[8] J. M. Hoover, S. S. Stahl, J. Am. Chem. Soc. 2011, 133,
16901–16910.
[9] J. M. Hoover, B. L. Ryland, S. S. Stahl, ACS Catal.
3
2
013, 3, 2599–2605.
[
10] J. M. Hoover, B. L. Ryland, S. S. Stahl, J. Am. Chem.
Typical Reaction Conditions with Cu(II)
Soc. 2013, 135, 2357–2367.
[
(bpy)Cu/(II)(OH)] (OTf) (9 mg, 5 mol%), bpy (47 mg,
[11] B. L. Ryland, S. D. McCann, T. C. Brunold, S. S. Stahl,
J. Am. Chem. Soc. 2014, 136, 12166–12173.
[12] a) J. Kim, S. S. Stahl, ACS Catal. 2013, 3, 1652–1656;
b) L. M. Dornan, Q. Cao, J. C. A. Flanagan, J. J. Craw-
ford, M. J. Cook, M. J. Muldoon, Chem. Commun.
2
2
10 mol% taking into account the bpy present in the com-
plex) and NMI (50 mg, 10 mol%) were dissolved in CH CN
3
(
15 mL, 11.79 g). Then, TEMPO (5 mg, 0.5) and benzyl alco-
hol (0.65 g, 0.4M) were added to the solution.
2
013, 49, 6030–6032; c) C. Tao, F. Liu, Y. Zhu, W. Liu,
General Flow Procedure for Cu/TEMPO-Catalyzed
Aerobic Oxidation of Primary Alcohols
Z. Cao, Org. Biomol. Chem. 2013, 11, 3349–3354.
[13] T. Sonobe, K. Oisaki, M. Kanai, Chem. Sci. 2012, 3,
3
249–3255.
2
1
mL of freshly prepared solution were injected into the
mL sample loop of the device. A PFA tubing of 2.6 m (i.d.
[
14] Y. Sasano, S. Nagasawa, M. Yamazaki, M. Shibuya, J.
Park, Y. Iwabuchi, Angew. Chem. 2014, 126, 3300–
of 1.6 mm) was used and for a residence time of 5 min, the
3
304; Angew. Chem. Int. Ed. 2014, 53, 3236–3240.
À1
flow rate of O was 4 NmL·min and the liquid flow rate
2
[
[
15] J. F. Greene, J. M. Hoover, D. S. Mannel, T. W. Root,
S. S. Stahl, Org. Process Res. Dev. 2013, 17, 1247–1251.
16] a) V. Hessel, Chem. Eng. Technol. 2009, 32, 1655–1681;
R. L. Hartman, J. P. McMullen, K. F. Jensen, Angew.
Chem. 2011, 123, 7642–7661; Angew. Chem. Int. Ed.
À1
was 0.16 mL·min . A back pressure of 5 bar was applied
using a back pressure regulator made in-house and con-
trolled with nitrogen flow (Analyt-MTC massflow control-
ler) and a micro-metering valve. The outlet port of the mi-
croreactor was connected to a 6-way gas sampling injection
valve (Agilent) for on-line analysis by Agilent 6890 GC
equipped with FID detector and Red dot FFAP column
2
2
011, 50, 7502–7519; b) C. Wiles, P. Watts, Green Chem.
012, 14, 38–54.
[
17] a) R. L. Hartman, J. P. McMullen, K. F. Jensen, Angew.
(
5 mꢂ0.05 mmꢂ0.05 mm). Liquid products were retrieved
Chem. 2011, 123, 7642–7661; Angew. Chem. Int. Ed.
from back-pressure regulator and analysed by a Shimadzu
2
011, 50, 7502–7519; b) V. Hessel, D. Kralisch, N. Kock-
mann, T. Noꢄl, Q. Wang, ChemSusChem 2013, 6, 746–
89.
2
0
010 GC-MS system equipped with a DB-5 column (15 mꢂ
.1 mmꢂ0.1 mm.).
7
[
[
18] T. Inoue, M. A. Schmidt, K. F. Jensen, Ind. Eng. Chem.
Res. 2007, 46, 1153–1160.
19] a) C. Liebner, J. Fischer, S. Heinrich, T. Lange, H. Hier-
onymus, E. Klemm, Process Saf. Environ. Prot. 2012,
References
9
0, 77–82; b) S. Heinrich, F. Edeling, C. Liebner, H. Hi-
eronymus, T. Lange, E. Klemm, Chem. Eng. Sci. 2012,
4, 540–543.
nd
[1] a) J.-E. Bꢃckvall, Modern Oxidation Methods, 2 edn.,
8
Wiley-VCH, Weinheim, 2010; b) S. Caron, R. W.
Dugger, S. G. Ruggeri, J. A. Ragan, D. H. B. Ripin,
Chem. Rev. 2006, 106, 2943–2989.
[
20] E. V. Rybak-Akimova, W. Otto, P. Deardorf, R. Roes-
ner, D. H. Busch, Inorg. Chem. 1997, 36, 2746–2753.
[21] C. Michel, P. Belanzoni, P. Gamez, J. Reedijk, E. J.
Baerends, Inorg. Chem. 2009, 48, 11909–11920.
[22] P. Belanzoni, C. Michel, E. J. Baerends, Inorg. Chem.
2011, 50, 11896–11904.
[
2] a) R. A. Sheldon, I. Arends, G. J. Ten Brink, A. Dijks-
man, Acc. Chem. Res. 2002, 35, 774–781; b) M. J.
Schultz, M. S. Sigman, Tetrahedron 2006, 62, 8227–
8
241; c) Y. Zhang, X. Cui, F. Shi, Y. Deng, Chem. Rev.
2
012, 112, 2467–2505; d) C. Parmeggiani, F. Cardona,
[23] L. Vanoye, A. Favre-Reguillon, A. Aloui, R. Philippe,
C. de Bellefon, RSC Adv. 2013, 3, 18931–18937.
[24] a) M. T. Kreutzer, F. Kapteijn, J. A. Moulijn, J. J. Heisz-
wolf, Chem. Eng. Sci. 2005, 60, 5895–5916; b) N. Shao,
A. Gavriilidis, P. Angeli, Chem. Eng. Sci. 2009, 64,
2749–2761; c) A. Leclerc, R. Philippe, V. Houzelot, D.
Schweich, C. de Bellefon, Chem. Eng. J. 2010, 165, 290–
300; d) P. Sobieszuk, J. Aubin, R. Pohorecki, Chem.
Eng. Technol. 2012, 35, 1346–1358.
Green Chem. 2012, 14, 547–564.
[
3] a) S. Wertz, A. Studer, Green Chem. 2013, 15, 3116–
3
2
134; b) M. B. Lauber, S. S. Stahl, ACS Catal. 2013, 3,
612–2616; c) Q. Cao, L. M. Dornan, L. Rogan, N. L.
Hughes, M. J. Muldoon, Chem. Commun. 2014, 50,
524–4543.
4
[
4] a) S. E. Allen, R. R. Walvoord, R. Padilla-Salinas,
M. C. Kozlowski, Chem. Rev. 2013, 113, 6234–6458;
Adv. Synth. Catal. 0000, 000, 0 – 0
ꢁ 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
7
ÞÞ
These are not the final page numbers!