Z. Hou et al. / Journal of Catalysis 258 (2008) 315–323
323
terials. Interestingly, the data suggest that there is an optimum
balance between high surface area and surface defects, and thus
that nanoscale agglomerates can exhibit significantly higher ac-
tivities compared with isolated small primary particles in highly
dispersed phases. This may be a useful guideline for further cata-
lyst design on the nanoscale for green oxidation methods.
[33] J.-D. Grunwaldt, M. Caravati, A. Baiker, J. Phys. Chem. B 110 (2006) 9916.
[34] M. Caravati, D.M. Meier, J.-D. Grunwaldt, A. Baiker, J. Catal. 240 (2006) 126.
[35] M. Caravati, J.-D. Grunwaldt, A. Baiker, Phys. Chem. Chem. Phys.
278.
7 (2005)
[36] M. Caravati, J.-D. Grunwaldt, A. Baiker, Catal. Today 91–92 (2004) 1.
[37] J.-D. Grunwaldt, M. Caratati, M. Ramin, A. Baiker, Catal. Lett. 90 (2003) 221.
[38] S. Campestrini, M. Carraro, R. Ciriminna, M. Pagliaro, U. Tonellato, Adv. Synth.
Catal. 347 (2005) 825.
[39] R. Ciriminna, S. Campestrini, M. Pagliaro, Org. Biomol. Chem. 4 (2006) 2637.
[40] N. Theyssen, Z. Hou, W. Leitner, Chem. Eur. J. 12 (2006) 3401, and references
therein.
[41] B. Karimi, A. Zamani, J.H. Clark, Organometallics 24 (2005) 4695.
[42] B. Karimi, S. Abedi, J.H. Clark, V. Budarin, Angew. Chem. Int. Ed. 45 (2006) 4776.
[43] C. Li, Q. Zhang, Y. Wang, H. Wan, Catal. Lett. 120 (2008) 126.
[44] S.F.J. Hackett, R.M. Brydson, M.H. Gass, I. Harvey, A.D. Newman, K. Wilson, A.F.
Lee, Angew. Chem. Int. Ed. 46 (2007) 8593.
Acknowledgments
This work was supported by the Max-Planck-Gesellschaft and
the Fonds der Chemischen Industrie. The authors thank Dr. B. Zi-
browius (MPI für Kohlenforschung) for recording the 29Si MAS
NMR spectra.
[45] P.T. Tanev, T.J. Pinnavaia, Chem. Mater. 8 (1996) 2068.
[46] H. Bönnemann, G. Braun, W. Brijoux, R. Brinkmann, S.A. Tilling, K. Seevogel, K.
Siepen, J. Organomet. Chem. 520 (1996) 143.
[47] P. Mehnert, J.Y. Ying, Chem. Commun. (1997) 2215.
[48] M.D. Jones, M.J. Duer, S. Hermans, Y.Z. Khimyak, B.F.G. Johnson, J.M. Thomas,
Angew. Chem. Int. Ed. 41 (2002) 4726.
Supporting information
Further analytical characterizations using XRD, N2 sorption ex-
periments, 29Si MAS NMR spectroscopy and XAFS, and a schematic
presentation of the continuous-flow setup. This material is avail-
[49] B.F.G. Johnson, Top. Catal. 24 (2003) 147.
[50] M.H. Valkenberg, W.F. Hölderich, Catal. Rev. 44 (2002) 321.
[51] A.P. Wight, M.E. Davis, Chem. Rev. 102 (2002) 3589.
[52] D.E. De Vos, M. Dams, B.F. Sels, P.A. Jacobs, Chem. Rev. 102 (2002) 3615.
[53] G. Kickelbick, Angew. Chem. Int. Ed. 43 (2004) 3102.
References
[54] Y. Mori, T.J. Pinnavaia, Chem. Mater. 13 (2001) 2173.
[1] R.A. Sheldon, I.W.C.E. Arends, G.-J.T. Brink, A. Dijksman, Acc. Chem. Res. 35
(2002) 774.
[2] R.A. Sheldon, J.K. Kochi, Metal-Catalyzed Oxidation of Organic Compounds, Aca-
demic Press, New York, 1981, p. 350.
[3] B.M. Trost, I. Fleming, S.V. Ley, Comprehensive Organic Synthesis, Pergamon,
Oxford, 1991.
[55] W. Zhang, T.R. Pauly, T.J. Pinnavaia, Chem. Mater. 9 (1997) 2491.
[56] P.T. Tanev, T.J. Pinnavaia, Chem. Mater. 8 (1996) 2068.
[57] T.R. Pauly, T.J. Pinnavaia, Chem. Mater. 13 (2001) 987.
[58] C.C. Chen, E.J. McKimmy, T.J. Pinnavaia, K.F. Hayes, Environ. Sci. Technol. 38
(2004) 4758.
[59] Y. Liu, T.J. Pinnavaia, J. Mater. Chem. 14 (2004) 1099.
[60] S.S. Kim, T.R. Pauly, T.J. Pinnavaia, Chem. Commun. (2000) 835.
[61] R.J.P. Corriu, E. Lancelle-Beltran, A. Mehdi, C. Reye, S. Brandes, R. Guilard, J.
Mater. Chem. 12 (2002) 1355.
[62] T.J. Pinnavaia, D.B. Jackson, J.E.G. Mdoe, J.H. Clark, New J. Chem. 23 (1999) 539.
[63] R.J.P. Corriu, A. Mehdi, C. Reye, C. Thieuleux, Chem. Mater. 16 (2004) 159.
[64] Density functional calculations (RI-BP86/6-31G* level with Stuttgart–Dresden
pseudopotential on Pd) for the charge of the palladium atom with Natu-
[4] M.J. Schultz, M.S. Sigman, Tetrahedron 62 (2006) 8227.
[5] P.T. Anastas, J.C. Warner, Green Chemistry: Theory and Practice, Oxford Univer-
sity Press, Oxford, 1998.
[6] P.T. Anastas, M. Kirchhoff, Acc. Chem. Res. 35 (2002) 686.
[7] P.T. Anastas, R.L. Lankey, Green Chem. 2 (2000) 289.
[8] J. Muzart, Tetrahedron 59 (2003) 5789.
[9] B.-Z. Zhan, A. Thompson, Tetrahedron 60 (2004) 2917.
[10] B.A. Steinhoff, I.A. Guzei, S.S. Stahl, J. Am. Chem. Soc. 126 (2004) 11268.
[11] S. Shimazu, T. Uehara, A. Asami, T. Hara, N. Ichikuni, J. Mol. Catal. A: Chem. 282
(2008) 28.
[12] H.L. Wu, Q.H. Zhang, Y. Wang, Adv. Synth. Catal. 347 (2005) 1356.
[13] A. Corma, H. Garcia, A. Leyva, J. Mol. Catal. A: Chem. 230 (2005) 97.
[14] M.S. Kwon, N. Kim, C.M. Park, J.S. Lee, K.Y. Kang, J. Park, Org. Lett. 7 (2005)
1077.
[15] T. Mallat, A. Baiker, Chem. Rev. 104 (2004) 3037.
[16] K. Mori, T. Hara, T. Mizugaki, K. Ebitani, K. Kaneda, J. Am. Chem. Soc. 126 (2004)
10657.
[17] T. Iwasawa, M. Tokunaga, Y. Obora, Y. Tsuji, J. Am. Chem. Soc. 126 (2004) 6554.
[18] S. Paavola, K. Zetterberg, T. Privalov, I. Csöregh, C. Moberg, Adv. Synth.
Catal. 346 (2004) 237.
ral Population Analysis (NPA) give the following results: [Pd(OAc)
2]3: +0.80
[(AcO)2-Pd(η2-dma)] (mononuclear model compound for 3, dma = dipyridyl-
methylamin): +0.75 [(AcO)2Pd2(μ2-OAc)2Pd1(η2-dma)] (binuclear model
compound for 3): Pd2 = +0.79, Pd1 = +0.75 [(AcO)2Pd3(μ2-AcO)2Pd2(μ2-
OAc)2Pd1(η2-dma)] (open trinuclear model compound for 3): Pd3 and
Pd2
=
+0.81,
Pd1
=
+0.75
[Pd1(μ2-OAc)(AcO)Pd3(μ2-AcO)2Pd2(μ2-
OAc)2Pd1(η1-dma)] (closed trinuclear model compound for 3): Pd3 and
√
Pd2 = +0.81, Pd1 = +0.78.
[65] It is known that the XANES of small particles differs in amplitude from that of
a bulk material. Hence, we performed the linear XANES fitting using not the
spectrum of bulk Pd but spectra of Pd nanoparticles from an earlier study of
Pd/C catalysts, in which Pd(0) was the only palladium state detected [66]. At-
tempts to fit the XANES region of material 4 by a sum of the basis spectra of
Pd foil, PdO and [Pd(OAc)2]3 resulted in significantly less agreement between
measurement and models.
[19] T. Nishimura, S. Uemura, Synlett (2004) 201.
[20] U.R. Pillai, E. Sahle-Demessie, Green Chem. 6 (2004) 161.
[21] Y. Uozumi, R. Nakao, Angew. Chem. Int. Ed. 42 (2003) 194.
[22] G.-J.T.I. Brink, W.C.E. Arends, M. Hoogenraad, G. Vespui, R.A. Sheldon, Adv.
Synth. Catal. 345 (2003) 497.
[23] D.R. Jensen, M.J. Schultz, J.A. Mueller, M.S. Sigman, Angew. Chem. Int. Ed. 42
(2003) 3810.
[24] G. Kovtun, T. Kameneva, S.L. Hladyi, M. Starchevsky, Y. Pazdersky, I. Stoarov, M.
Vargaftik, I. Moiseev, Adv. Synth. Catal. 344 (2002) 957.
[25] K. Ebitani, Y. Fujie, K. Keneda, Langmuir 15 (1999) 3557.
[26] P.G. Jessop, W. Leitner (Eds.), Chemical Synthesis Using Supercritical Fluids,
Wiley–VCH, Weinheim, 1999.
[27] A. Baiker, Chem. Rev. 99 (1999) 453.
[28] P. Licence, J. Ke, M. Sokolova, S.K. Ross, M. Poliakoff, Green Chem. 5 (2003) 99.
[29] W. Leitner, Acc. Chem. Res. 35 (2002) 746.
[30] M. Caravati, J.-D. Grunwaldt, A. Baiker, Catal. Today 126 (2007) 27.
[31] Z. Hou, N. Theyssen, A. Brinkmann, W. Leitner, Angew. Chem. Int. Ed. 44 (2005)
1346.
[66] K.V. Klementiev, A.Yu. Stakheev, O.P. Tkachenko, N.N. Tolkachev, W. Grünert,
Hasylab Annual Report 2002.
[67] A.Yu. Stakheev, O.P. Tkachenko, G.I. Kapustin, N.S. Telegina, G.N. Baeva, T.R.
Brueva, K.V. Klementiev, W. Grünert, L.M. Kustov, Russ. Chem. Bull. 53 (2004)
528.
[68] M. Borovski, J. Phys. IV 7 (1997) 259.
[69] A.I. Cooper, Adv. Mater. 15 (2003) 1049.
[70] P.L. Dhepe, A. Fukuoka, M. Ichikawa, Phys. Chem. Chem. Phys. 5 (2003) 5565.
[71] J.-D. Grunwaldt, M. Caravati, A. Baiker, J. Phys. Chem. B 110 (2006) 25587.
[72] A.F. Lee, S.F.J. Hackett, J.S.J. Hargreaves, K. Wilson, Green Chem. 8 (2006) 549.
[73] F. Li, Q. Zhang, Y. Wang, Appl. Catal. A 334 (2008) 217.
[74] B. Ioan, A. Miyazaki, K.-I. Aika, Appl. Catal. B 59 (2005) 71.
[75] F. Maillard, S. Schreier, M. Hanzlik, E.R. Savinova, S. Weinkauf, U. Stimming,
Phys. Chem. Chem. Phys. 7 (2005) 385.
[32] Z. Hou, N. Theyssen, W. Leitner, Green Chem. 9 (2007) 127.