Communications
[7] a) J. S. M. Samec, J.-E. Bäckvall, P. G. Andersson, P. Brandt,
Chem. Soc. Rev. 2006, 35, 237; b) S. Gladiali, E. Alberico, Chem.
Soc. Rev. 2006, 35, 226.
[8] P. Chaudhuri, K. Wieghardt, T. Weyhermüller, T. K. Paine, S.
Mukherjee, C. Mukherjee, Biol. Chem. 2005, 386, 1023.
[9] J.-L. Pierre, F. Thomas, C. R. Chim. 2005, 8, 65.
[10] R. C. Pratt, T. D. P. Stack, Inorg. Chem. 2005, 44, 2367.
[11] P. Gamez, I. A. Koval, J. Reedijk, Dalton Trans. 2004, 4079.
[12] B. A. Jazdewski, W. B. Tolman, Coord. Chem. Rev. 2000, 200–
202, 633.
spectroscopic data indicate that an iridium–nitrogen-radical
complex plays an important role in the catalytic transfer
dehydrogenation of the alcohols. The efficiency of this
reaction is comparable to that of the transfer hydrogenation
of carbonyl compounds promoted by diamagnetic transition-
metal complexes. The reactions reported herein complement
this chemistry and should be of equally high synthetic value.
[13] I. E. Markó, P. R. Giles, M. Tsukazaki, S. M. Brown, C. J. Urch,
Science 1996, 274, 2044.
Experimental Section
2: [Ir2(m2-Cl)2(coe)4] (300 mg, 0.34 mmol) was dissolved in THF
(25 mL), and trop2dach (1; 331mg, 0.68 mmol) and a few drops of
CH3CN were added. Subsequently, AgOTf (172 mg, 0.68 mmol) was
added to this mixture. After stirring for 1h at room temperature, the
mixture was filtered and concentrated in vacuo. Red crystals were
grown from THF/hexane (1:1). Yield: 259 mg (309 mmol, 91%). M.p.
[14] Reviews: a) S. V. Ley, J. Norman, W. P. Griffith, S. P. Marsden,
Synthesis 1994, 639; b) R. A. Sheldon, I. W. C. E. Arends, A.
Dijksman, Catal. Today 2000, 57, 157; c) R. A. Sheldon,
I. W. C. E. Arends, G.-J. ten Brink, A. Dijksman, Acc. Chem.
Res. 2002, 35, 774; d) R. Irie, T. Katsuki, Chem. Rec. 2004, 4, 96;
e) S. S. Stahl, Angew. Chem. 2004, 116, 3480; Angew. Chem. Int.
Ed. 2004, 43, 3400.
[15] The most active homogeneous catalyst in an Oppenauer
oxidation yet described is [IrCp*(NHC)(MeCN)2]2+ (Cp* =
pentamethylcyclopentadienyl; NHC = N-heterocyclic carbine),
which reaches turnover numbers (TON) of approximately 7000:
F. Hanasaka, K. Fujita, R. Yamaguchi, Organometallics 2005, 24,
3422.
[16] L. Guidoni, K. Spiegel, M. Zumstein, U. Röthlisberger, Angew.
Chem. 2004, 116, 3348; Angew. Chem. Int. Ed. 2004, 43, 3286.
[17] Y. Mityazato, T. Wada, K. Tanaka, Bull. Chem. Soc. Jpn. 2006,
79, 745.
[18] T. Büttner, J. Geier, G. Frison, J. Harmer, C. Calle, A. Schweiger,
H. Grützmacher, Science 2005, 307, 235.
[19] P. Maire, M. Königsmann, A. Sreekanth, J. Harmer, A.
Schweiger, H. Grützmacher, J. Am. Chem. Soc. 2006, 128, 6578.
[20] P. Maire, F. Breher, H. Schönberg, H. Grützmacher, Organo-
metallics 2005, 24, 3207.
[21] Crystal data for 4: C52H64IrKN2O7·C4H8O; crystal size: 0.31
0.23 0.21mm 3, monoclinic, space group P21, a = 11.7856(7), b =
24.750(1), c = 17.254(1) , b = 95.342(1)8, V= 5010.89 3, Z = 4,
m = 2.80 mmꢀ1, T= 200 K, 69595 reflections, 24616 independent,
1
(decomp.): 208–2128C. H NMR (300.1MHz, [D 8]THF): d = 4.02 (d,
3JH,H = 12.0 Hz, 2H, CHolefin), 4.75 (d, 3JH,H = 11.7 Hz, 2H, CHolefin),
5.53 (s, 2H, CHbenzyl), 5.92 (s br, 2H, NH), 7.41–7.72 ppm (m, 16H,
CHar). 13C NMR (62.9 MHz, [D8]THF): d = 53.0 (s, 2C, CHbenzyl), 60.4
(s, 2C, CHolefin), 67.5 ppm (s, 2C, CHolefin). UV/Vis (THF): lmax
=
486 nm.
3: The addition of 1equiv KO tBu to 2 in [D8]THF led to a deep
red solution of the neutral amino amido complex 3, which was
1
characterized by NMR spectroscopy. H NMR (300.1MHz): signals
for four inequivalent olefinic protons: d = 2.66 (d, 3JH,H = 8.5 Hz), 3.34
(d, 3JH,H = 8.3 Hz), 3.46 (d, 3JH,H = 8.5 Hz), 4.09 ppm (d, JH,H
=
3
8.5 Hz); signal for NH: d = 5.74 ppm (d, JH,H = 12.5 Hz). 13C NMR
(62.9 MHz): signals for four inequivalent olefinic carbon nuclei: d =
47.8, 51.4, 54.8, 62.9 ppm. UV/Vis (THF): lmax = 504 nm.
3
4: To a solution of 2 (100 mg, 0.12 mmol) in THF, KOtBu (29 mg,
0.26 mmol) and [18]crown-6 (32 mg, 0.12 mmol) were added. The
color of the reaction mixture changed to dark red. After layering the
mixture with n-hexane, red crystals of 4 grew overnight. Yield: 101 mg
(0.11 mmol, 94%). M.p. (decomp.): 186–1898C. 1H NMR
(300.1MHz, [D 8]THF): d = 2.63 (d, 3JH,H = 8.3 Hz, 2H, CHolefin),
2.91(d, 3JH,H = 8.5 Hz, 2H, CHolefin), 5.32 ppm (s, 2H, CHbenzyl).
13C NMR (62.9 MHz, [D8]THF): d = 49.8 (s, 2C, CHolefin), 52.5 (s, 2C,
CHolefin), 65.8 ppm (s, 2C, CHbenzyl). UV/Vis (THF): lmax = 524 nm.
Catalyses: The catalyst precursor 2 (6 mmol) was dissolved in
chlorobenzene (25 mL) at the temperature given in Table 1. Sub-
sequently, KOtBu (6–18 mmol) was added, and after 5 min stirring, the
substrate (60 mmol) was added. After another 5 min, freshly sub-
limed BQ (8.6 g, 80 mmol) was added to the reaction mixture. The
progress of the reaction was monitored by GC and 1H NMR
spectroscopy. Further details are given in the Supporting Information.
Rint = 0.0304, 1225 parameters, 14 restraints, R1 = 0.0302 (for
22911 reflections with I > 2s(I)), wR2 = 0.0685 (for all data),
GooF = 1.032 (on F2), max./min. residual electron density:
1.611/ꢀ0.502 eꢀ3. CCDC-622200 (4) contains the supplemen-
tary crystallographic data for this paper. These data can be
obtained free of charge from The Cambridge Crystallographic
[22] P. Maire, F. Breher, H. Grützmacher, Angew. Chem. 2005, 117,
6483; Angew. Chem. Int. Ed. 2005, 44, 6325.
[23] EPR (X-band, 298 K): g = 2.005, a(1H) = 6.7 MHz. J. C. Chip-
pendale, E. Warhurst, J. Chem. Soc. Faraday Trans. 1968, 64,
2332.
Received: December 21, 2006
Published online: March 30, 2007
[24] A. Schweiger, G. Jeschke, Principles of Pulse Electron Para-
magnetic Resonance, Oxford University Press, Oxford, 2001.
[25] For the use of quinones as electron-transfer mediators in the
ruthenium-catalyzed aerobic oxidation of secondary alcohols,
see: G. Csjernyik, A. H. Éll, L. Fadini, B. Pugin, J.-E. Bäckvall, J.
Org. Chem. 2002, 67, 1657.
Keywords: alcohols · homogeneous catalysis · iridium ·
oxidation · radicals
.
[26] B. B. F. Mirjalili, M. A. Zolfigol, A. Bamoniri, A. Zarie, Bull.
Korean Chem. Soc. 2003, 24, 400.
[1] M. Fontecave, J.-L. Pierre, C. R. Acad. Sci. Ser. IIc 2001, 4, 531.
[2] M. Fontecave, J.-L. Pierre, Bull. Soc. Chim. Fr. 1996, 133, 653.
[3] J. Stubbe, W. A. van der Donk, Chem. Rev. 1998, 98, 705.
[4] F. Himo, P. E. M. Siegbahn, Chem. Rev. 2003, 103, 2421.
[5] P. R. Ortiz de Montellano, Cytochrome P450: Structure, Mech-
anism, and Biochemistry, 3rd ed., Kluwer, New York, 2005.
[6] J. W. Whittaker, Arch. Biochem. Biophys. 2005, 433, 227.
ꢀ
ꢀ
=
[27] Reduction potentials: PhCH O/PhCH-OC : ꢀ1.67 V; BQ/SQC :
ꢀ0.54 V, SQCꢀ/HQ2ꢀ: ꢀ1.4 V (vs. the saturated calomel electrode
´
(SCE), aprotic solvents): a) V. P. Vanysek in CRC Handbook of
Chemistry and Physics, 87th ed., CRC, Boca Raton, 2006, pp. 8 –
Electrochemical Methods, Wiley, New York, 1980, pp. 701– 702.
3570
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 3567 –3570