LETTER
One-pot Sequence for the Decarboxylation of α-Amino Acids
545
Table 2 Variation of the Experimental Conditions for the Decarboxylation of α-Amino Acids
Entry Substrate
Conditions
Producta
9a
Yield
(Conversionb)
1
2
3
4
5
6
7
8
9
L-Phenylalanine
H2O, NH4Cl, NBS in DMF then NiCl2⋅6H2O,
NaBH4
82%
(100%)
L-(2S)-isoLeucine H2O, NH4Cl, NBS in DMF then NiCl2⋅6H2O,
9a
85%
(100%)
NaBH4
L-Phenylalanine
L-Phenylalanine
L-Phenylalanine
L-Phenylalanine
wet MeOH, NH4Cl
NBS in DMF then NiCl2⋅6H2O, NaBH4
9ac
9ac
9ac
9a
30%
(41%)
MeOH–H2O (95:5), NH4Cl, NBS in DMF then
NiCl2⋅6H2O, NaBH4
65%
(79%)
EtOH–H2O (95:5), NH4Cl, NBS in DMF then
NiCl2⋅6H2O, NaBH4
71%
(89%)
DMF–H2O (95:5), NH4Cl, NBS in DMF then
NiCl2⋅6H2O, NaBH4
65%
(68%)
L-(2S)-isoLeucine EtOH–H2O (95:5), NH4Cl, NBS in DMF then
NiCl2⋅6H2O, NaBH4
8c
73%
(87%)
L-(2R)-Threonine EtOH–H2O (95:5), NH4Cl, NBS in DMF then
NiCl2⋅6H2O, NaBH4
10
55%
(82%)
L-Phenylalanine
EtOD–D2O (95:5), ND4Cl, NBS in DMF then
NiCl2, NaBD4
68%
(75%)
9b
a Isolated as the hydrochloride salt.
b Based on the amount of starting material recovered.
c The product was isolated as the free amine after reduction of the volume of the reaction mixture and extraction with diethyl ether from a
basic aqueous solution.
(10) Laval, G.; Clegg, W.; Crane, C. G.; Hammershøi, A.;
References
Sargeson, A. M.; Golding, B. T. Chem. Commun. 2002,
1874.
(1) Curtius, T.; Lederer, A. Chem. Ber. 1886, 19, 2462.
(2) See for example: (a) Pasini, A.; Zunio, F. Angew. Chem.,
(11) (a) Gowda, B. T.; Mahadevappa, D. S. J. Chem. Soc., Perkin
Int. Ed. Engl. 1987, 26, 615. (b) Miyadera, T.; Sugimura,
Trans. 2 1983, 323. (b) For the oxidative decarboxylation
Y.; Hashimoto, T.; Tanaka, T.; Iino, K.; Shibata, T.;
of N-protected amino acids see for example: Boto, A.;
Sugawara, S. J. Antibiotics 1983, 36, 1034.
Hernandez, R.; De Leon, Y.; Suarez, E. J. Org. Chem. 2001,
(3) See for example: Martens, J. Top. Curr. Chem. 1984, 125,
66, 7796.
165.
(12) Gopalakrishnan, G.; Hogg, J. L. J. Org. Chem. 1985, 50,
(4) Chatelus, G. Bull. Soc. Chim. Fr. 1964, 2533.
(5) (a) Hashimoto, M.; Eda, Y.; Osanai, Y.; Iwai, T.; Aoki, S.
Chem. Lett. 1986, 6, 893. (b) Wallbaum, S.; Mehler, T.;
Martens, J. Synth. Commun. 1994, 24, 1381.
(6) (a) Boeker, E. A.; Snell, E. E. In The Enzymes, 3rd ed. Vol.
1206.
(13) Satoh, T.; Suzuki, S. Tetrahedron Lett. 1969, 4555.
(14) Typical Procedures. (a) L-Asparagine (2.90 g, 19.3 mmol)
was taken up in a pH 5 phosphate buffer (prepared from 100
mL of a 0.1 M solution of citric acid and 100 mL of a 0.2 M
solution of disodium hydrogen orthophosphate
dodecahydrate) (90 mL). To the stirred amino acid solution
was added NBS (10.3 g, 57.9 mmol) in DMF (20 mL) at r.t.,
where upon CO2 gas was evolved immediately. After 30
min, nickel(II) dichloride hexahydrate (22.9 g, 96.5 mmol)
was dissolved into the reaction mixture and NaBH4 (5.84 g,
6; Boyer, P. D., Ed.; Academic Press: New York, 1972, 217–
254. (b) Werle, E. Angew. Chem. 1951, 63, 550. (c) Gale,
E. F. Adv. Enzymol. 1946, 6, 1.
(7) (a) Nakai, H.; Kanaoka, Y. Synthesis 1982, 141.
(b) Flemming, K. Strahlentherapie 1964, 123, 457.
(c) Photochemical decarboxylation of N-arenesulfonyl
amino acids: Papageorgiou, G.; Corrie, J. E. T. Tetrahedron
1999, 237.
154 mmol) was added in portions with vigorous stirring.
Addition of the latter was exothermic and hydrogen gas was
(8) Kametani, T.; Takano, S.; Hibino, S.; Takeshita, M.
vigorously evolved. After 20 min at r.t., the reaction mixture
Synthesis 1972, 475.
(9) (a) Rossen, K.; Simpson, P. M.; Wells, K. Synth. Commun.
was filtered through Celite® and diluted with distilled H2O
(500 mL). The light green filtrate was loaded on a column
(25 cm × 2 cm) of Dowex 50WX8-200 ion exchange resin,
the column was washed well with H2O (400 mL) and the
1993, 23, 1071. (b) Kanao, S.; Shinozuka, S. J. Pharm. Soc.
Jpn. 1947, 67, 218.
Synlett 2003, No. 4, 542–546 ISSN 0936-5214 © Thieme Stuttgart · New York