ChemComm
Communication
Table 2 Scope of the Ru-catalyzed aerobic oxidative decarboxylation of
amino acids
a
b
Amino acid
Nitrile
X [%]
S [%]
9
9
75
83
81
79
Scheme 1 Proposed mechanism for the Ru-catalyzed oxidative decarboxyl-
ation of a-amino acids in the presence of molecular oxygen.
À
4
99
99
by replacement of the nitrile product by an incoming OH or
fresh reactant.
In conclusion, alumina-supported hydrous ruthenium oxide
is an efficient catalyst for oxidative decarboxylation of amino
acids into nitriles and amides using molecular oxygen. Several
aliphatic and functionalized amino acids are transformed
successfully in water under mild conditions without producing
halide waste.
4
LC, JV and IS are grateful to IWT Flanders and FWO Flanders
for PhD fellowships. BL thanks KU Leuven (IOF-ZKC6712).
DEDV acknowledges BELSPO (IAP-PAI P7/05) and the Flemish
government (Methusalem grant CASAS) for structural funding.
We thank Karel Duerinckx for assistance with NMR measurements.
8
8
9
0
85
Notes and references
1
P. Pollak, G. Romeder, F. Hagedorn and H.-P. Gelbeke, Nitriles,
Ullmann’s Encyclopaedia of Industrial Chemistry, Wiley-VCH, Weinheim,
Germany, 2012.
1
5
8
1
89
88
2
3
4
5
6
7
T. M. Lammens, M. C. R. Franssen, E. L. Scott and J. P. M. Sanders,
Biomass Bioenergy, 2012, 44, 168.
L. Claes, R. Matthessen, I. Rombouts, T. De Baerdemaeker, D. Depla,
J. A. Delcour, B. Lagrain and D. E. De Vos, ChemSusChem, 2015, 8, 345.
J. Le N ˆo tre, E. L. Scott, M. C. R. Franssen and J. P. M. Sanders, Green
Chem., 2011, 13, 807.
J.-J. Dai, Y.-B. Huang, C. Fang, Q.-X. Guo and Y. Fu, ChemSusChem,
2012, 5, 617.
a
b
T. M. Lammens, J. Le N oˆ tre, M. C. R. Franssen, E. L. Scott and
J. P. M. Sanders, ChemSusChem, 2011, 4, 785.
(a) H. D. Dakin, Biochem. J., 1916, 10, 319; (b) H. D. Dakin, Biochem.
J., 1917, 11, 79; (c) G. W. Stevenson and J. M. Luck, J. Biol. Chem.,
1961, 236, 715; (d) G. Laval and B. T. Golding, Synlett, 2003, 542;
Amino acid conversion. Nitrile selectivity.
A potential mechanism for the ruthenium-catalyzed aerobic
oxidative decarboxylation is proposed in Scheme 1. The resting
(
e) L. De Luca and G. Giacomelli, Synlett, 2004, 2180.
8
R. Matthessen, L. Claes, J. Fransaer, K. Binnemans and D. E. De Vos,
Eur. J. Org. Chem., 2014, 6649.
n+
19
state of the catalyst, a supported monomeric Ru (OH) species,
is the same as the one demonstrated to be involved in the
9 A. But, J. Le N oˆ tre, E. L. Scott, R. Wever and J. P. M. Sanders,
ChemSusChem, 2012, 5, 1199.
1
2h,16
aerobic alcohol and amine dehydrogenation.
The a-amino
10 For homogeneously copper-catalyzed aerobic oxidations, see:
acid enters the catalytic cycle by ligand exchange of the
amino group on the Ru; the carboxylate might even displace
another ligand in the Ru coordination sphere. Then, the
Ru-amide species undergoes b-hydride elimination into an
a-iminocarboxylate and a Ru-monohydride species. The active
Ru (OH) catalyst is regenerated via a hydroperoxide inter-
mediate that is most probably formed by insertion of O into
the Ru-hydride bond. Under the reaction conditions, the hydro-
peroxide or even H is rapidly decomposed by ruthenium.
In a second stage, the Ru-coordinated a-iminocarboxylate is
decarboxylated, with release of CO ; and the catalyst is regenerated
(
a) P. Capdevielle, A. Lavigne, D. Sparfel, J. Baranne-Lafont, N. K.
Cuong and M. Maumy, Tetrahedron Lett., 1990, 31, 3305; (b) J. Kim
and S. S. Stahl, ACS Catal., 2013, 3, 1652; (c) J. Wang, S. Lu, X. Cao
and H. Gu, Chem. Commun., 2014, 50, 5637.
2
0
1
1 For homogeneous ruthenium-catalyzed aerobic oxidations, see:
(a) R. Tang, S. E. Diamond, N. Neary and F. Mares, J. Chem. Soc., Chem.
Commun., 1978, 562; (b) A. J. Bailey and B. R. James, Chem. Commun.,
n+
1
996, 2343; (c) A. Taketoshi, T. Koizumi and T. Kanbara, Tetrahedron
2
Lett., 2010, 51, 6457; (d) S. Aiki, A. Taketoshi, J. Kuwabara, T. Koizumi and
T. Kanbara, J. Organomet. Chem., 2011, 696, 1301; (e) L. Cristian, S. Nica,
O. D. Pavel, C. Mihailciuc, V. Almasan, S. M. Coman, C. Hardacre and
V. I. Parvulescu, Catal. Sci. Technol., 2013, 3, 2646.
1
9
2 2
O
12 For heterogeneous ruthenium-catalyzed aerobic oxidations, see:
2
(a) K. Mori, K. Yamaguchi, T. Mizugaki, K. Ebitani and K. Kaneda,
6530 | Chem. Commun., 2015, 51, 6528--6531
This journal is ©The Royal Society of Chemistry 2015