10520
D.-F. Niu et al. / Tetrahedron 64 (2008) 10517–10520
connected with a HP 6890 gas chromatograph. Cyclic voltammo-
grams were measured with CHI660 electrochemical analyzer (CHI,
USA). Silver (Ag), copper (Cu), nickel (Ni) and titanium (Ti) elec-
trodes (d¼2 mm) were used as working electrodes, respectively.
The counter electrode and the reference electrode were a platinum
4.2.6. Ethyl malonic acid (2g)
þ
GC–MS (m/z, %) 132 (M , 1), 114 (5), 105 (60), 87 (100), 60 (24),
1
43 (35), 28 (27), 15 (3); H NMR
d
8.99 (s, 1H), 4.14 (q, J¼7.2 Hz, 2H),
13
3.54 (s, 2H), 1.30 (t, J¼7.2 Hz, 3H); C NMR (CDCl
3
) d 171.23, 166.90,
61.95, 40.83, 13.93.
wire and Ag–AgI–0.1 M n-Bu
Acetonitrile (CH CN) was kept over 4 Å molecular sieves. Tet-
raethylammonium chloride (Et NCl) and tetraethylammonium
tetrafluoroborate (Et NBF ) were prepared according to the litera-
ture. 1-Butyl-3-methyl imidazolium tetrafluoroborate (BMIMBF
4
NI in DMF, respectively.
3
4.2.7. Heptanoic acid (2h)
þ
4
GC–MS (m/z, %) 130 (M , 1), 113 (2), 101 (9), 87 (28), 73 (56), 60
1
4
4
3
(100), 43 (25), 28 (15); H NMR (CDCl ) d 10.52 (s, 1H), 2.32 (t,
14
4
)
J¼7.7 Hz, 2H), 1.62–1.56 (m, 2H), 1.33–1.23 (m, 6H), 0.86 (t, J¼7.7 Hz,
13
and 1-butyl-3-methyl imidazolium bromide were prepared accord-
ing to the literature.15 Other reagents were used as received.
3H); C NMR (CDCl
3
) d 180.54, 34.13, 31.46, 28.72, 24.74, 22.73,
14.01.
4
.2. General procedure for electrochemical carboxylation
4.2.8. Cyclohexaneacetic acid (2i)
þ
of aliphatic halides
GC–MS (m/z, %) 142 (M , 7), 124 (2), 99 (6), 83 (90), 60 (100), 53
1
(
10), 41 (32), 28 (29); H NMR (CDCl
3
)
d
11.16 (s, 1H), 2.20 (d,
Controlled-potential electrolysis was carried out at ꢀ1.6 V in
J¼6.9 Hz, 2H), 1.85–1.60 (m, 6H), 1.38–1.10 (m, 3H), 1.08–0.85 (m,
13
a mixture of 1a (0.2 M) and Et
4
NCl (0.1 M) in 20 mL dry MeCN
3
2H); C NMR (CDCl ) d 179.77, 41.93, 34.65, 32.95, 26.08, 25.98.
2
under a slow stream of CO in a one compartment electrochemical
cell equipped with a metallic ring cathode and a sacrificial Mg
ꢀ
1
anode until 2 F mol of charge was passed. After electrolysis, the
solvent was evaporated off under reduced pressure and the residual
Acknowledgements
ꢀ1
was acidified with 2 mol L
extracted with (25ꢄ4 mL) diethyl ether. The extracts were mixed
with a saturated aqueous solution of NaHCO . After separation of
ether and aqueous phases, the latter was acidified with 2 mol L
hydrochloric acid and the carboxylic acid was extracted with
25ꢄ4 mL) diethyl ether. Then, the organic layer was treated with
saturated aqueous NaCl, and dried with MgSO . After evaporation
of ether, an almost pure 3-methyl-3-butenoic acid was obtained.
aqueous hydrochloric acid and
This work was supported by the National Natural Science
Foundation of China (No. 20573037) and Shanghai Leading Aca-
demic Discipline Project (B409).
3
ꢀ1
(
References and notes
4
1. Aresta, M.; Dibenedetto, A. Catal. Today 2004, 98, 455–462.
2
3
. Gibson, D. H. Chem. Rev. 1996, 96, 2063–2095.
. (a) Amarnath, V.; Broom, A. D. Chem. Rev. 1977, 77, 183–217; (b) Haruki, E.; Ito,
T.; Yamamoto, A.; Yamazaki, N.; Higashi, F.; Inoue, S. In Organic and Bio-organic
Chemistry of Carbon Dioxide; Inore, S., Yamazaki, N., Eds.; Kodansha: Tokyo,
Japan, 1982.
4
.2.1. 3-Methyl-3-butenoic acid (2a)
þ
GC–MS (m/z, %) 100 (M , 89), 82 (19), 72 (51), 60 (28), 55 (67), 41
1
(
64), 28 (100), 14 (2); H NMR (CDCl
3
)
d
9.36 (s, 1H), 4.95 (s, 1H),
1
3
4
.89 (s, 1H), 3.07 (s, 2H), 1.83 (s, 3H); C NMR (CDCl
3
)
d
177.35,
4. (a) Giff, J.; Gigg, G. J. Chem. Soc. C 1967, 431–434; (b) Giff, J.; Gigg, G. J. Chem. Soc.
C 1967, 1865–1866.
137.92, 115.32, 43.06, 22.37.
5
. (a) Wagenknecht, J. H. J. Electroanal. Chem. 1974, 52, 489–492; (b) Tokuda, M.;
Kabuki, T.; Katoh, Y.; Suginome, H. Tetrahedron Lett. 1995, 36, 3345–3348; (c)
Mazin, V. M.; Mysov, E. I.; Sterlin, S. R.; Grinberg, V. A. J. Fluorine Chem. 1998, 88,
29–35.
4.2.2. 3-Butenoic acid (2b)
þ
GC–MS (m/z, %) 86 (M , 8), 58 (5), 44 (5), 41 (15), 38 (3), 32 (19),
6
. (a) Zheng, G. D.; Stradiotto, M.; Li, L. J. J. Electroanal. Chem. 1998, 453, 79–88; (b)
Zheng, G. D.; Yan, Y.; Gao, S.; Tong, S. L.; Gao, D.; Zhen, K. J. Electrochim. Acta
1996, 41, 177–182.
1
2
5
d
3
8 (100), 14 (3); H NMR (CDCl ) d 10.71(s, 1H), 6.00–5.80 (m, 1H),
13
.20 (dd, J¼12, 1.5 Hz, 2H), 3.15 (d, J¼6.9 Hz, 2H); C NMR (CDCl
3
)
7. (a) Fiori, G.; Rondinini, S.; Sello, G.; Vertova, A.; Cirja, M.; Conti, L. J. Appl.
178.17, 129.46, 119.11, 38.78.
Electrochem. 2005, 35, 363–368; (b) Ardizzone, S.; Cappelletti, G.; Mussini, P. R.;
Rondinini, S.; Doubova, L. M. J. Electroanal. Chem. 2002, 532, 285–293; (c) Isse,
A. A.; Ferlin, M. G.; Gennaro, A. J. Electroanal. Chem. 2005, 581, 38–45; (d) Isse,
A. A.; Giusti, A. D.; Gennaro, A.; Falciola, L.; Mussini, P. R. Electrochim. Acta 2006,
51, 4956–4964; (e) Isse, A. A.; Gennaro, A. Chem. Commun. 2002, 2798–2799; (f)
Scialdone, O.; Galia, A.; Errante, G.; Isse, A. A.; Gennaro, A.; Folardo, G. Elec-
trochim. Acta 2008, 53, 2514–2528.
4
.2.3. Butanoic acid (2d)
þ
GC–MS (m/z, %) 88 (M , 3), 73 (35), 60 (100), 45 (13), 42 (16), 39
1
(
10), 28 (20), 15 (2); H NMR (CDCl
3
)
d
11.65 (s, 1H), 2.32 (t, J¼7.2 Hz,
13
2
d
H), 1.69–1.62 (m, 2H), 0.96 (t, J¼7.2 Hz, 3H); C NMR (CDCl
3
)
8. Cleary, J. A.; Mubarak, M. S.; Vieira, K. L.; Anderson, M. R.; Peters, D. G.
J. Electroanal. Chem. 1986, 198, 107–124.
180.44, 35.96, 18.12, 13.53.
9
. (a) Niu, D. F.; Zhang, L.; Xiao, L. P.; Luo, Y. W.; Lu, J. X. Appl. Organomet. Chem.
2007, 21, 941–944; (b) Zhang, L.; Niu, D. F.; Zhang, K.; Zhang, G. R.; Luo, Y. W.;
Lu, J. X. Green Chem. 2008, 10, 202–206.
4
.2.4. Pentanoic acid (2e)
þ
GC–MS (m/z, %) 102 (M , 1), 87 (3), 73 (29), 60 (100), 55 (10), 41
1
10. Gennaro, A.; Isse, A. A.; Severin, M. G.; Vianello, E.; Bhugun, I.; Saveant, J. M.
(
15), 28 (87), 14 (2); H NMR (CDCl
3
)
d
11.83 (s, 1H), 2.36 (t, J¼7.2 Hz,
J. Chem. Soc., Faraday Trans. 1996, 92, 3963–3968.
13
2
H), 1.66–1.60 (m, 2H), 1.42–1.34 (m, 2H), 0.93 (t, J¼7.2 Hz, 3H);
C
1
1. Rondinini, S. B.; Mussini, P. R.; Crippa, F.; Sello, G. Electrochem. Commun. 2000, 2,
491–496.
2. (a) Foresti, M. L.; Innocenti, M.; Forni, F.; Guidelli, R. Langmuir 1998, 14, 7008–
016; (b) Zei, M. S. J. Electroanal. Chem. 1991, 308, 295–307; (c) Mitchell, S. J.;
3
NMR (CDCl ) d
180.48, 33.80, 26.71, 22.15, 13.63.
1
7
4.2.5. 3-Methylbutanoic acid (2f)
Brown, G.; Rikvold, P. A. J. Electroanal. Chem. 2000, 493, 68–74; (d) Wandlowski,
T.; Wang, J. X.; Ocko, B. M. J. Electroanal. Chem. 2001, 500, 418–434.
13. Feroci, M.; Inesi, A.; Rossi, L. Tetrahedron Lett. 2000, 41, 963–966.
þ
GC–MS (m/z, %) 102 (M , 1), 87 (20), 74 (2), 69 (5), 60 (100), 43
1
(
31), 28 (26), 18 (4); H NMR (CDCl
3
)
d
, 9.77 (s, 1H), 2.22 (d, J¼6 Hz,
14. Experimental Electrochemistry for Chemists; Awyer, D. T., Jr., Robert, J. L., Eds.;
13
2
d
H), 2.12–2.06 (m, 1H), 0.97 (d, J¼6 Hz, 6H); C NMR (CDCl
3
)
Wiley-Interscience: New York, NY, 1974.
179.62, 43.14, 25.41, 22.62, 22.30.
15. Nishida, T.; Tashiro, Y.; Yamamoto, M. J. Fluorine Chem. 2003, 120, 135–141.