Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
(B)
(B)
Acc. Chem. Res., 2015, 48, 643-652.
(A)
DOI: 10.1039/D0CC05263A
80
60
40
20
0
2. S. F. Slovin, S. J. Keding and G. Ragupathi, Immunol. Cell
Biol., 2005, 83, 418-428.
3. S. Lang and X. Huang, Front. Chem., 2020, 8, 284.
4. F. Y. Avci, X. Li, M. Tsuji and D. L. Kasper, Nat. Med., 2011,
17, 1602-1609.
5. L. A. Holmberg, Abstr. Pap. Am. Chem. S, 2006, 232.
6. A. Kaiser, N. Gaidzik, U. Westerlind, D. Kowalczyk, A.
Hobel, E. Schmitt and H. Kunz, Angew. Chem. Int. Ed. Engl.,
2009, 48, 7551-7555
Group 1 Group 4 Group 7
Rha-OVA
Non-immunized
Rabbit serum only
7. N. Gaidzik, A. Kaiser, D. Kowalczyk, U. Westerlind, B.
Gerlitzki, H. P. Sinn, E. Schmitt and H. Kunz, Angew. Chem.
Int. Ed. Engl., 2011, 50, 9977-9981.
8. N. Stergiou, M. Glaffig, H. Jonuleit, E. Schmitt and H. Kunz,
ChemMedChem, 2017, 12, 1424-1428.
Figure 4 Immunological evaluation of the synthetic vaccine: (A)
FACS analysis of the binding of antisera induced by groups 1, 4 and
7 to MCF-7 cells. (B) CDC activities of antisera from each group
were measured using the CCK-8 assay. Error bars represent the SD
of three parallel experiments.
9. Z. Zhou, G. Liao, S. S. Mandal, S. Suryawanshi and Z. Guo,
Chem. Sci., 2015, 6, 7112-7121.
10. R. Dagan, J. Poolman and C. A. Siegrist, Vaccine, 2010, 28,
5513-5523.
11. K. Pobre, M. Tashani, I. Ridda, H. Rashid, M. Wong and R.
Booy, Vaccine, 2014, 32, 1423-1430.
12. S. Ingale, M. A. Wolfert, J. Gaekwad, T. Buskas and G. J.
Boons, Nat. Chem. Biol., 2007, 3, 663-667.
MCF-7. Competitive FACS analysis by incubation group 7 sera
with cancer cells in the presence of sTn antigen 6 verified that
the surface sTn antigen on cancer cells is involved in the binding
of anti-sTn antibodies to MCF-7 cells (SI, Fig. S12). We also
examined the activities of antibody-mediated CDC. For this
purpose, MCF-7 cells were first incubated with sera from groups
1, 4 and 7 at dilutions of 1/100 for 1 h, and then incubated with
1: 100 diluted rabbit serum (as recourses of complement) at 37℃
for 4 h. Thereafter, cell lysis was measured with a commercial
CCK8 kit. As presented in Figure 4B, serum from groups 7
triggered the most potent CDC cytotoxicity to kill the cancer
cells. This activity could be largely attributed to the fact that
group 7 produced the highest anti-sTn antibodies.
13. H. Cai, Z. Y. Sun, M. S. Chen, Y. F. Zhao, H. Kunz and Y. M.
Li, Angew. Chem. Int. Ed. Engl., 2014, 53, 1699-1703.
14. M. Li, Z. Wang, B. Yan, X. Yin, Y. Zhao, F. Yu, M. Meng, Y.
Liu and W. Zhao, Medchemcomm., 2019, 10, 2073-2077.
15. R. J. Anderson, C. W. Tang, N. J. Daniels, B. J. Compton, C.
M. Hayman, K. A. Johnston, D. A. Knight, O. Gasser, H. C.
Poyntz, P. M. Ferguson, D. S. Larsen, F. Ronchese, G. F.
Painter and I. F. Hermans, Nat. Chem. Biol., 2014, 10, 943-
949.
16. J. J. Du, C. W. Wang, W. B. Xu, L. Zhang, Y. K. Tang, S. H.
Zhou, X. F. Gao, G. F. Yang and J. Guo, iScience, 2020, 23,
100935.
17. M. Skwarczynski, M. Zaman, C. N. Urbani, I. C. Lin, Z. Jia,
M. R. Batzloff, M. F. Good, M. J. Monteiro and I. Toth, Angew.
Chem. Int. Ed. Engl., 2010, 49, 5742-5745.
18. M. Shi, K. A. Kleski, K. R. Trabbic, J. P. Bourgault and P. R.
Andreana, J. Am. Chem. Soc., 2016, 138, 14264-14272.
19. X. Wu, Z. Yin, C. McKay, C. Pett, J. Yu, M. Schorlemer, T.
Gohl, S. Sungsuwan, S. Ramadan, C. Baniel, A. Allmon, R.
Das, U. Westerlind, M. G. Finn and X. Huang, J. Am. Chem.
Soc., 2018, 140, 16596-16609.
20. R. T. Sheridan, J. Hudon, J. A. Hank, P. M. Sondel and L. L.
Kiessling, Chembiochem, 2014, 15, 1393-1398.
21. H. Hong, Z. Zhou, K. Zhou, S. Liu, Z. Guo and Z. Wu, Chem.
Sci., 2019, 10, 9331-9338.
In conclusion, we developed a new strategy for targeting
vaccines to APCs based on endogenous antibodies. In vivo
immunological studies demonstrated that in the presence of
endogenous anti-Rha antibodies, sTn-BSA-Rha conjugates can
form immune complexes by recruiting pre-generated anti-Rha
antibodies to deliver the vaccine to APCs. The structure-activity
study showed that the high loading of Rha hapten on the vaccine
could mediate a better delivery to APCs, thereby triggering a
stronger and faster immune response. This strategy provides a
simple but efficient approach to augment the immunogenicity of
carbohydrate antigen using weak and non-toxic carrier protein
that otherwise is difficult to achieve. Considering the widely
used carbohydrate antigen in vaccine research and industry, this
strategy is potentially applicable to construct new
glycoconjugates for vaccine development.
22. P. Karmakar, K. Lee, S. Sarkar, K. A. Wall and S. J. Sucheck,
Bioconjug. Chem., 2016, 27, 110-120.
23. U. Galili, Immunology, 2013, 140, 1-11
24. N. T. Jacob, K. Anraku, A. Kimishima, B. Zhou, K. C. Collins,
J. W. Lockner, B. A. Ellis and K. D. Janda, Chem. Commun.
(Camb.), 2017, 53, 8156-8159
25. J. X. Wang, B. Ellis, B. Zhou, L. M. Eubanks, S. Blake and K.
D. Janda, Chem. Commun. (Camb.), 2020, 56, 6551-6554.
26. Z. Zhou, M. Mondal, G. Liao and Z. Guo, Org. Biomol. Chem.,
2014, 12, 3238-3245.
27. H. Kunz, S. Birnbach, Angew. Chern. Int. Ed. Engl., 1986, 25,
360-362.
28. S. Sarkar, S. A. Lombardo, D. N. Herner, R. S. Talan, K. A.
Wall and S. J. Sucheck, J. Am. Chem. Soc., 2010, 132, 17236-
17246.
This work was supported by the National Natural Science
Foundation of China (No. 21472070, 21602084) and Social
Development Key Project of Jiangsu Province [BE2019632], the
project was partly funded by the Priority Academic Program
Development of Jiangsu Higher Education Institutions, the 111
Project (No. 111-2-06), China Postdoctoral Science Foundation
Grant (BX20200153, 2018M632227), the Open Foundation of
Key Laboratory of Carbohydrate Chemistry & Biotechnology
Ministry of Education (No. KLCCB-KF202006) and National
First-class Discipline Program of Food Science and Technology
[JUFSTR20180101].
Notes and references
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins