ACS Catalysis
Research Article
optimized conditions using a 1,5-COD and 1:1 toluene:H O
Commun. 2013, 49, 5912−5920. (c) Wang, Q.; O’Hare, D. Chem. Rev.
2
2
012, 112, 4124−4155. (d) Oliver, S. R. J. Chem. Soc. Rev. 2009, 38,
mixed solvent. 3-Buten-2-one and 2-cyclopentan-1-one were
good acceptors for the reaction with 2 (entries 1 and 2). 3-
Nonen-2-one and chalcone also reacted with 2, generating 4-
phenyl-nonan-2-one and 1,3,3-triphenylpropan-1-one, respec-
tively, in excellent yields (entries 7 and 8). Rh/NiZn was also
efficacious toward various p-substituted phenylboronic acids
1
868−1881. (e) Kaneda, K.; Ebitani, K.; Mizugaki, T.; Mori, K. Bull.
Chem. Soc. Jpn. 2006, 79, 981−1016. (f) de Roy, A.; Forano, C.; El
Malki, K.; Basse, J.-P. In Expanded Clays and Other Microporous Solids;
Occelli, M. L.; Robson, H. E., Eds.; Van Nostrand Reinhold: New
York, 1992; pp 108−169.
(2) (a) Bull, R. M. R.; Markland, C.; Williams, G. R.; O’Hare, D. J.
(
entries 3−6), resulting in high yields of coupled products. We
Mater. Chem. 2011, 21, 1822−1828. (b) Rajamathi, J. T.; Arulraj, A.;
Ravishankar, N.; Arulraj, J.; Rajamathi, M. Langmuir 2008, 24, 11164−
11168. (c) Arizaga, G. G. C.; Satyanarayana, K. G.; Wypych, F. Solid
State Ionics 2007, 178, 1143−1162. (d) Yang, J.-H.; Han, Y.-S.; Park,
M.; Park, T.; Hwang, S.-J.; Choy, Y.-S. Chem. Mater. 2007, 19, 2679−
propose the following reaction pathway for 1,4-additions
catalyzed by Rh/NiZn, which mirrors that previously reported
for homogeneous Rh catalysts: (i) transmetalation of the
interlayer [Rh(OH)6] species and arylboronic acid to
generate a Rh−Ar species; (ii) olefin insertion into the Rh−
Ar bond, yielding an oxa-π-allyl rhodium enolate, which is
readily protonated by water; (iii) elimination of the desired
addition product, regenerating the initial [Rh(OH)6]3 species.
Phenylboronic acids might also be quarternized with interlayer
3
−
2
685. (e) Morioka, H.; Tagaya, H.; Karasu, M.; Kadokawa, J.; Chiba,
K. Inorg. Chem. 1999, 38, 4211−4216. (f) Yamanaka, S.; Sako, T.; Seki,
K.; Hattori, M. Solid State Ionics 1992, 53−56, 527−533.
(3) (a) Hara, T.; Sawada, J.; Nakamura, Y.; Ichikuni, N.; Shimazu, S.
Catal. Sci. Technol. 2011, 1, 1376−1382. (b) Hara, T.; Kurihara, J.;
Ichikuni, N.; Shimazu, S. Chem. Lett. 2010, 39, 304−305. (c) Hara, T.;
Ishikawa, M.; Sawada, J.; Ichikuni, N.; Shimazu, S. Green Chem. 2009,
−
−
3− 26
OH anions to facilitate transmetalation to [Rh(OH) ] .
6
1
(
1, 2034−2040.
4) (a) Sathisha, T. V.; Swamy, B. E. K.; Chandrashekar, B. N.;
Thomas, N.; Eswarappa, B. J. Electroanal. Chem. 2012, 674, 57−64.
b) Delorme, F.; Seron, A.; Licheron, M.; Veron, E.; Giovannelli, F.;
Beny, C.; Jean-Prost, V.; Martineau, D. J. Solid State Chem. 2009, 182,
4
. CONCLUSIONS
3
−
Synthesis of a well-defined [Rh(OH) ] /NiZn catalyst system
6
(
which efficiently catalyzes the 1,4-addition reaction between
various enones and phenylboronic acids into their correspond-
ing β-substituted carbonyl compounds has been demonstrated.
The intercalated, monomeric, trivalent Rh hydroxide species
was stabilized by the NiZn matrix during reaction, enabling
recycling with negligible deactivation. We are currently
investigating the application of our catalyst toward asymmetric
2
3
350−2356. (c) Kandare, E.; Hossenlopp, J. M. Inorg. Chem. 2006, 45,
766−3773. (d) Rojas, R.; Barriga, C.; Ulibarri, M. A.; Malet, P.; Rives,
V. J. Mater. Chem. 2002, 12, 1071−1078. (e) Choy, J.-H.; Kwon, Y.-
M.; Han, K.-S.; Song, W.-W.; Chang, S.-H. Mater. Lett. 1998, 34, 356−
3
2
63. (e) Nishizawa, H.; Yuasa, K. J. Solid State Chem. 1998, 141, 229−
34. (f) Choy, J.-H.; Kwon, Y.-M.; Song, W.-W.; Chang, S.-H. Bull.
1,4-addition reactions and the hydrophenylation of internal
Korean Chem. Soc. 1997, 18, 450−453. (g) Komaeneni, S.; Li, Q. H.;
Roy, R. J. Mater. Res. 1996, 11, 1866−1869. (h) Meyn, M.; Beneke, K.;
Lagaly, C. Inorg. Chem. 1993, 32, 1209−1215.
alkynes with phenylboronic acid into substituted alkenes for
which we have obtained promising preliminary results.
(
5) (a) Rajamathi, J. T.; Raviraj, N. H.; Ahmed, M. F.; Rajamathi, M.
Solid State Sci. 2009, 11, 2080−2085. (b) Rojas, R.; Ulibarri, M. A.;
ASSOCIATED CONTENT
Supporting Information
The photoimages of preparation solution, UV−vis spectra, TG-
DTA data, bulk Ni/Zn ratio and surface elemental composition,
■
Barriga, C.; Rives, V. Microporous Mesoporous Mater. 2008, 112, 262−
*
S
́
72. (c) Rojas, R.; Barriga, C.; Ulibarri, M. A.; Rives, V. J. Solid State
2
Chem. 2004, 177, 3392−3401.
(6) (a) Kandare, E.; Hossenlopp, J. M. J. Phys. Chem. B 2005, 109,
the E values in Rh K-edge XANES, curve-fitting results of FT
8469−8475. (b) Tronto, J.; Leroux, F.; Dubois, M.; Taviot-Gueho, C.;
Valim, J. J. Phys. Chem. Solids 2006, 67, 978−982. (c) Arulraj, J.;
Rajamathi, J. T.; Prabhu, K. R.; Rajamathi, M. Solid State Sci. 2007, 9,
0
8
12−816. (d) Richardson-Chong, S. S. D.; Patel, R.; Williams, G. R.
Ind. Eng. Chem. Res. 2012, 51, 2913−2921.
7) (a) Nityashree, N.; Rajamathi, M. J. Phys. Chem. Solids 2013, 74,
AUTHOR INFORMATION
■
*
(
1
164−1168. (b) Rajamathi, J. T.; Ravishankar, N.; Rajamathi, M. Solid
State Sci. 2005, 7, 195−199.
(8) For reviews, see: (a) Tian, P.; Dong, H.-Q.; Lin, G.-Q. ACS Catal.
Notes
2
012, 2, 95−119. (b) Edwards, H. J.; Hargrave, J. D.; Penrose, S. D.;
Frost, C. G. Chem. Soc. Rev. 2010, 39, 2093−2105. (c) Defieber, C.;
Grutzmacher, H.; Carreira, E. M. Angew. Chem., Int. Ed. 2008, 47,
482−4502. (d) Miyaura, N. Bull. Chem. Soc. Jpn. 2008, 81, 1535−
553. (e) Hayashi, T.; Yamasaki, K. Chem. Rev. 2003, 103, 2829−2844.
9) Sakai, M.; Hayashi, H.; Miyaura, N. Organometallics 1997, 16,
The authors declare no competing financial interest.
̈
ACKNOWLEDGMENTS
■
4
1
This study was supported by a Grant-in-Aid for Scientific
Research from the Ministry of Education, Culture, Sports,
Science, and Technology of Japan (25420824). The Rh K-edge
XAFS experiments were conducted at a facility in the Photon
Factory (KEK-PF, Proposal No. 2012G596). We are also
grateful to Mr. Muneharu Nozawa and Ms. Tomoko Fukusaki
for their invaluable contributions to the work described here.
A.F.L. thanks the EPSRC for the award of a Leadership
Fellowship (EP/G007594/4), and K.W. thanks the Royal
Society for the award of an Industry Fellowship.
(
4229−4231.
(10) Recently reported examples, see: (a) Korenaga, T.; Ko, A.;
Shimada, K. J. Org. Chem. 2013, 78, 9975−9980. (b) Khiar, N.;
́
́
Salvador, A.; Valdivia, V.; Chelouan, A.; Alcudia, A.; Alvarez, E.;
́
Fernandez, I. J. Org. Chem. 2013, 78, 6510−6521. (c) Takaya, H.;
Iwaya, T.; Ogata, K.; Isozaki, K.; Yokoi, T.; Yoshida, R.; Yasuda, N.;
Seike, H.; Takenaka, T.; Nakamura, M. Synlett 2013, 24, 1910−1914.
(d) Chen, Q.; Chen, C.; Guo, F.; Xia, W. Chem. Commun. 2013, 49,
6
433−6435. (e) Fairhurst, N. W. G.; Munday, R. H.; Carbery, D. R.
Synlett 2013, 24, 496−498.
REFERENCES
■
(11) (a) Jana, R.; Tunge, J. A. J. Org. Chem. 2011, 76, 8376−8385.
(b) Jana, R.; Tunge, J. A. Org. Lett. 2009, 11, 971−974. (c) Otomatsu,
Y.; Senda, T.; Hayashi, T. Org. Lett. 2004, 6, 3357−3359. (d) Uozumi,
Y.; Nakazono, M. Adv. Synth. Catal. 2002, 344, 274−277.
(
1) For book, reviews, and accounts, see: (a) Omwoma, S.; Chen,
W.; Tsunashima, R.; Song, Y.-F. Coord. Chem. Rev. 2014, 258−259,
8−71. (b) He, S.; An, Z.; Wei, M.; Evans, D. G.; Duan, X. Chem.
5
4
045
dx.doi.org/10.1021/cs501267h | ACS Catal. 2014, 4, 4040−4046