3976
S. Pahwa et al. / Bioorg. Med. Chem. Lett. 20 (2010) 3972–3976
Figure 5. Selectively docked Class II compounds in GcHDH active site; 339(5A), 333(5B), 334(5C) and RJ-278(5D).
the molecule. As illustrated in Fig. 5D, RJ-278 docked well in the
outer cavity of GcHDH active site and formed total fifteen hydro-
gen bonds. RJ-278 was then tested for biological activity, which
References and notes
1. Alifano, P.; Fani, R.; Lio, P.; Lazcano, A.; Bazzicalupo, M.; Carlomagno, M. S.;
Bruni, C. B. Microbiol. Rev. 1996, 60, 44.
2. Black, M. T.; Hodgson, J. E.; Knowles, D. J. C.; Riechard, R. W.; Nicholas, R. O.;
Burnham, M. K. R.; Pratt, J. M.; Rosenberg, M.; Ward, J. M.; Lonetto, M. A. Google
Patents, 2001.
3. Kishore, G. M.; Shah, D. M. Annu. Rev. Biochem. 1988, 57, 627.
4. Nagai, A.; Ohta, D. J. Biochem. 1994, 115, 22.
5. Grubmeyer, C.; Skiadopoulos, M.; Senior, A. E. Arch. Biochem. Biophys. 1989, 272,
311.
showed IC50 value of 3.56 lM.
Our structural data are in agreement with the overall mecha-
nism of action for HisD as proposed by Barbosa et al. where the res-
idues Glu326 and His327 participate in acid–base catalysis.23 From
the crystal structure of E. coli histidinol dehydrogenase complexed
with substrate, zinc and imidazole (PDB ID: 1KAE), it was observed
6. Nagai, A.; Ward, E.; Beck, J.; Tada, S.; Chang, J. Y.; Scheidegger, A.; Ryals, J. Proc.
Natl. Acad. Sci. U.S.A. 1991, 88, 4133.
that the hydroxyl group of substrate (L-histidinol) formed hydrogen
bonds to the His367 and His327. The imidazole ring provided coor-
dination to Zn2+ and also formed hydrogen bond to Glu414*. Similar
interactions with corresponding residues in GcHDH were detected
in S-3 and RJ-278 from our docking results. S-3 and RJ-278 made
hydrogen bonds with above mentioned catalytically important res-
idues, that is, His738, His778, Glu737, and Glu825 (His327, His367,
Glu326, and Glu414 in E. coli HDH, respectively) (Fig. 3 and Table 2).
These observations further validate our results and strengthen the
proposed inhibition of GcHDH by S-3 and RJ-278.
In conclusion, histidinol dehydrogenase from G. candidum con-
stitutes a suitable target for reported antifungal compounds, which
represent valuable candidates for the potential development of no-
vel inhibitors. 3D structure of GcHDH was determined using homol-
ogy modeling technique. The docking studies show an extensive in
silico evaluation of the substrate analog inhibitors of GcHDH for
their potential antifungal activity. Moreover, the study of the inter-
actions of the inhibitors with the active site of the HDH enzyme of-
fered a better understanding of inhibitor action, allowing the design
of new potential drug leads with improved inhibitory activity.
7. Kanaori, K.; Uodome, N.; Nagai, A.; Ohta, D.; Ogawa, A.; Iwasaki, G.; Nosaka, A.
Y. Biochemistry 1996, 35, 5949.
8. Abdo, M. R.; Joseph, P.; Boigegrain, R. A.; Liautard, J. P.; Montero, J. L.; Köhler, S.;
Winum, J. Y. Bioorg. Med. Chem. 2007, 15, 4427.
9. Dancer, J. E.; Ford, M. J.; Hamilton, K.; Kilkelly, M.; Lindell, S. D.; O’Mahony, M.
J.; Saville-Stones, E. A. Bioorg. Med. Chem. Lett. 1996, 6, 2131.
10. Joseph, P.; Abdo, M. R.; Boigegrain, R. A.; Montero, J. L.; Winum, J. Y.; Kohler, S.
Antimicrob. Agents Chemother. 2007, 51, 3752.
11. Buchta, V.; Otcenasek, M. Mycoses 1988, 31, 363.
12. Sfakianakis, A.; Krasagakis, K.; Stefanidou, M.; Maraki, S.; Koutsopoulos, A.;
Kofteridis, D.; Samonis, G.; Tosca, A. Med. Mycol. 2007, 45, 81.
13. Jagirdar, J.; Geller, S. A.; Bottone, E. J. Hum. Pathol. 1981, 12, 668.
14. Kassamali, H.; Anaissie, E.; Ro, J.; Rolston, K.; Kantarjian, H.; Fainstein, V.;
Bodey, G. P. J. Clin. Microbiol. 1987, 25, 1782.
15. Kantardjiev, T.; Kuzmanova, A.; Baikushev, R.; Zisova, L.; Velinov, T. Folia Med.
1998, 40, 42.
16. Pahwa, S.; Chavan, A. G.; Jain, R.; Roy, N. Chem. Biol. Drug Des. 2008, 72, 229.
17. Pahwa, S.; Roy, N. Int. J. Integr. Biol. 2008, 3, 1.
18. Chemical computing groups Inc.: Montreal, Canada.
19. Tripos Associates Inc., 1699. S. Hanley Rd., St. Louis, MO 631444, USA.
20. Keesey, J. K., Jr.; Bigelis, R.; Fink, G. R. J. Biol. Chem. 1979, 254, 7427.
21. Altschul, S. F. G. W.; Miller, W.; Myers, E. W.; Lipman, D. J. J. Mol. Biol. 1990, 215,
403.
22. Berman, H. M. W. J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I.
N.; Bourne, P. E. Nucleic Acids Res. 2000, 28, 235.
23. Barbosa, J. A.; Sivaraman, J.; Li, Y.; Larocque, R.; Matte, A.; Schrag, J. D.; Cygler,
M. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 1859.
24. Needleman, S. B.; Wunsch, C. D. J. Mol. Biol. 1970, 48, 443.
25. Laskowski, R. M. M.; Moss, D.; Thornton, J. J. Appl. Crystallogr. 1993, 26, 283.
26. Bowie, J. U.; Luthy, R.; Eisenberg, D. Science 1991, 253, 164.
27. Luthy, R.; Bowie, J. U.; Eisenberg, D. Nature 1992, 356, 83.
Supplementary data
Supplementary data associated with this article can be found, in