10.1002/anie.202103410
Angewandte Chemie International Edition
RESEARCH ARTICLE
Chem. Rev. 2008, 108, 5359-5406; e) G. Deslongchamps, P.
Deslongchamps, Tetrahedron 2013, 69, 6022-6033; f) P. Vermeeren, T.
A. Hamlin, I. Fernández, F. M. Bickelhaupt, Angew. Chem. Int. Ed. 2020,
59, 6201-6206.
regioselective asymmetric dearomative oxygenation reactions
and (ii) the utility of high pressure conditions to force Diels–Alder
processes with recalcitrant materials without any loss of expected
selectivities. The computational calculations underlined the
significant role played by Cieplak–Fallis hyperconjugative effects
in controlling the connecting site-specific regioselectivity and the
stereoselectivity in such a natural case of bispericylic Diels–Alder
reactions.
[3]
[4]
[5]
a) D. L. Boger, Chem. Rev. 1986, 86, 781-793; b) H. Waldmann,
Synthesis 1994, 535-551.
a) R. B. Woodward, R. Hoffmann, Angew. Chem. Int. Ed. 1969, 81, 781-
853; b) K. N. Houk, Acc. Chem. Res. 1975, 8, 361-369.
a) K. C. Nicolaou, S. A. Snyder, T. Montagnon, G. Vassilikogiannakis,
Angew. Chem. Int. Ed. 2002, 41, 1668-1698; b) K.-i. Takao, R. Munakata,
K.-i. Tadano, Chem. Rev. 2005, 105, 4779-4807; c) J.-A. Funel, S. Abele,
Angew. Chem. Int. Ed. 2013, 52, 3822-3863.
To the best of our knowledge, all other reported cases of
cyclodimerization of natural[31] or unnatural chiral ortho-quinols
strictly follow the exact same selectivities, as well as those of
related ortho-quinone (spirolactonic) monoketals[13,20,21,32] and
even those of dimerizing cyclohexa-2,4-dienones bearing non-
oxygenated substituents at C6.[21a,33] The question as to whether
or not natural cases of such bispericyclic [4+2] cycloadditions
benefit from the intervention of particular enzymes (i.e., Diels-
Alderases) remains open, but the spontaneity with which most of
these cyclizations experimentally occurred casts doubt on this
possibility. Other biosynthetically relevant examples of Diels-
Alderase-free [4+2] dimerizations have been demonstrated,
notably with alkenylbutenolides for which the process is also
bispericyclic.[7] Nevertheless, the fact that we had to rely on high
pressure conditions to drive the construction of (+)-maytenone
and its diastereomer ex vivo might indicate that some kind of a
[4+2] cyclase accelerates the process in vivo.[5c] However, the role
of such a protein would be essentially to chaperone two ortho-
quinol monomers toward operational proximity, as all the
elements of controls and transition state stabilization are
inherently embedded in the structure of those monomers
[6]
[7]
[8]
a) E. M. Stocking, R. M. Williams, Angew. Chem. Int. Ed. 2003, 42, 3078-
3115; b) K. Cottet, M. Kolympadi, D. Marković, M.-C. Lallemand, Curr.
Org. Chem. 2016, 20, 2421-2442; c) B. R. Lichman, S. E. O’Connor, H.
Kries, Chem. Eur. J. 2019, 25, 6864-6877.
a) T. Wang, T. R. Hoye, Nat. Chem. 2015, 7, 641-645, and references
cited therein; b) A. Minami, H. Oikawa in Biomimetic Organic Synthesis,
Vol. 2 (Eds.: E. Poupon, B. Nay), Wiley-VCH, Weinheim, 2011, pp. 753-
-786.
a) R. M. Carman, L. K. Lambert, W. T. Robinson, J. M. A. M. Van Dongen,
Aust. J. Chem. 1986, 39, 1843-1850; b) B.-N. Su, Q.-X. Zhu, Z.-J. Jia,
Tetrahedron Lett. 1999, 40, 357-358; c) C. Zdero, F. Bohlmann, H. M.
Niemeyer, Phytochemistry 1991, 30, 1597-1601; d) A. W. Johnson, T. J.
King, R. J. Martin, J. Chem. Soc. 1961, 4420-4425; e) C. P. Falshaw, T.
J. King, J. Chem. Soc. Perkin Trans. I 1983, 1749-1752; f) L. K. Mdee,
R. Waibel, M. H. H. Nkunya, S. A. Jonker, H. Achenbach, Phytochemistry
1998, 49, 1107-1113; g) Y.-H. Liao, L.-Z. Xu, S.-L. Yang, J. Dai, Y.-S.
Zhen, M. Zhu, N.-J. Sun, Phytochemistry 1997, 45, 729-732; h) M. J.
Palframan, G. Kociok-Köhn, S. E. Lewis, Org. Lett. 2011, 13, 3150-3153;
i) P.-Y. Zhuang, S.-G. Ma, G.-J. Zhang, X.-J. Wang, Y. Zhang, S.-S. Yu,
Y.-B. Liu, J. Qu, Y. Li, Phytochem. Lett. 2013, 6, 444-448; j) N. Abe, T.
Murata, A. Hirota, Biosci. Biotechnol. Biochem. 1998, 62, 661-666; k) H.
Kneifel, C. Poszich-Buscher, S. Rittich, E. Breitmaier, Angew. Chem. Int.
Ed. Engl. 1991, 30, 202-203.
[9]
a) N. Abe, O. Sugimoto, K.-i. Tanji, A. Hirota, J. Am. Chem. Soc. 2000,
122, 12606-12607; b) N. Abe, T. Arakawa, K. Yamamoto, A. Hirota,
Biosci. Biotechnol. Biochem. 2002, 66, 2090-2099.
Acknowledgements
Financial support from the Agence Nationale de la Recherche
(ANR-10-BLAN-0721, IODINNOV), the CNRS, the Conseil
Régional d’Aquitaine, and the Ministère de l’Enseignement
Supérieur, de la Recherche et de l’Innovation, including doctoral
research assistantships for M.E.A, R.C. and C.B. is gratefully
acknowledged. This work has benefited from the analytical
facilities of the CESAMO platform at the University of Bordeaux.
We thank B. Kauffman and S. Massip (CNRS-UMS 3033) for
conducting X-ray diffraction experiments and solving the
structures of compounds 4 and 20, Prof. C. K. Jankowski for
kindly providing us with the NMR spectra of natural 4, and Dr A.
Fedotova for her kind help in the use of the high pressure
equipment.
[10] a) A. al Fahad, A. Abood, K. M. Fisch, A. Osipow, J. Davison, M.
Avramović, C. P. Butts, J. Piel, T. J. Simpson, R. J. Cox, Chem. Sci. 2014,
5, 523-527; b) A. Sib, T. A. M. Gulder, Angew. Chem. Int. Ed. 2017, 56,
12888-12891; c) L. Kahlert, E. F. Bassiony, R. J. Cox, E. J. Skellam,
Angew. Chem. Int. Ed. 2020, 59, 5816-5822.
[11] a) N. Lebrasseur, J. Gagnepain, A. Ozanne-Beaudenon, J.-M. Léger, S.
Quideau, J. Org. Chem. 2007, 72, 6280-6283; b) S. A. Baker Dockrey, A.
L. Lukowski, M. R. Becker, A. R. H. Narayan, Nat. Chem. 2017, 10, 119-
125.
[12] W. Metlesics, F. Wessely, Monatsh. Chem. 1957, 88, 108-117.
[13] S. Quideau, L. Pouységu, Org. Prep. Proced. Int. 1999, 31, 617-680.
[14] a) R. M. Carman, S. Owsia, J. M. A. M. Van Dongen, Aust. J. Chem.
1987, 40, 333-340; b) S. Dong, J. Zhu, J. A. Porco, Jr., J. Am. Chem.
Soc. 2008, 130, 2738-2739; c) C. Bosset, R. Coffinier, P. A. Peixoto, M.
El Assal, K. Miqueu, J.-M. Sotiropoulos, L. Pouységu, S. Quideau,
Angew. Chem. Int. Ed. 2014, 53, 9860-9864.
Crystallographic parameters for compounds 4 and 20 are
available free of charge from the Cambridge Crystallographic
Data Centre under CCDC-1148173[25a] and CCDC-1967527. The
coordinate files of the calculated transition states are available
from the authors on request as .pdb files (TS-A to TS-G) for 3D
molecular viewing.
[15] J. Gagnepain, F. Castet, S. Quideau, Angew. Chem. Int. Ed. 2007, 46,
1533-1535; Corrigendum 2008, 47, 628.
[16] R. Coffinier, M. El Assal, P. A. Peixoto, C. Bosset, K. Miqueu, J.-M.
Sotiropoulos, L. Pouységu, S. Quideau, Org. Lett. 2016, 18, 1120-1123.
[17] M. Bergner, D. C. Duquette, L. Chio, B. M. Stoltz, Org. Lett. 2015, 17,
3008-3010.
[18] X.-D. Ren, N. Zhao, S. Xu, H.-N. Lü, S.-G. Ma, Y.-B. Liu, Y. Li, J. Qu, S.-
S. Yu, Tetrahedron 2015, 71, 4821-4829.
Keywords: total synthesis • cycloaddition • asymmetric
[19] K. C. Nicolaou, K. S. Simonsen, G. Vassilikogiannakis, P. S. Baran, V. P.
Vidali, E. N. Pitsinos, E. A. Couladouros, Angew. Chem. Int. Ed. 1999,
38, 3555-3559.
synthesis • hypervalent compounds • transition states
[20] K. Holmberg, Acta Chem. Scand. 1974, B 28, 857-865.
[21] a) A. S. Kende, P. MacGregor, J. Am. Chem. Soc. 1961, 83, 4197-4204;
b) E. Adler, K. Holmberg, Acta Chem. Scand. 1974, B 28, 549-554; c) A.
Bérubé, I. Drutu, J. L. Wood, Org. Lett. 2006, 8, 5421-5424; d) J.
[1]
[2]
O. Diels, K. Alder, Justus Liebigs Ann. Chem. 1928, 460, 98-122.
a) J. Sauer, R. Sustmann, Angew. Chem. Int. Ed. 1980, 19, 779-807; b)
U. Pindur, G. Lutz, C. Otto, Chem. Rev. 1993, 93, 741-761; c) E. J. Corey,
Angew. Chem. Int. Ed. 2002, 41, 1650-1667; d) S. Reymond, J. Cossy,
7
This article is protected by copyright. All rights reserved.