Capsule of a Resorcinarene as a Self-Assembled Nanoreactor
drogen-bonded hexameric capsule changes the selectivity of a
reaction significantly by the second-sphere environment
around the active site, as displayed by enzymes: A. Cavarzan,
A. Scarso, P. Sgarbossa, G. Strukul, J. N. H. Reek, J. Am.
Chem. Soc. 2011, 133, 2848–2851.
Acknowledgments
This work was supported by the Japan Society for the Promotion
of Science (JSPS), through a Grant-in-Aid for Scientific Research
(C) (no.22550125).
[9] I. T. Horváth, J. Rábai, Science 1994, 266, 72–75.
[10] For reviews, see: a) J.-M. Vincent, J. Fluorine Chem. 2008, 129,
903–909; b) J. A. Gladysz, D. P. Curran, I. T. Horváth in Hand-
book of Fluorous Chemistry, Wiley-VCH, Weinheim, 2004; c) P.
Kirsch in Modern Fluoroorganic Chemistry, Wiley-VCH,
Weinheim, 2004, pp. 171–202.
[11] For a review on calixarene capsules, see: L. Avram, Y. Cohen,
J. Rebek Jr., Chem. Commun. 2011, 47, 5368–5375.
[12] S. Shimizu, T. Kiuchi, N. Pan, Angew. Chem. 2007, 119, 6562–
6565; Angew. Chem. Int. Ed. 2007, 46, 6442–6445.
[1] a) P. W. N. M. van Leeuwen (Ed.), Supramolecular Catalysis,
Wiley-VCH, Weinheim, 2008; b) T. Schrader, A. D. Hamilton
(Eds.), Functional Synthetic Receptors, Wiley-VCH, Weinheim,
2005; c) J. W. Steed, J. L. Atwood in Supramolecular Chemistry,
Wiley, Chichester, 2000; d) J.-M. Lehn in Supramolecular
Chemistry, VCH, Weinheim, 1995; e) D. J. Cram, J. M. Cram
in Container Molecules and Their Guests, Royal Society of
Chemistry, Cambridge, 1994.
[13] K. E. Mayers, K. Kumar, J. Am. Chem. Soc. 2000, 122, 12025–
12026.
[2] For reviews, see: a) M. J. Wiester, P. A. Ulmann, C. A. Mirkin,
Angew. Chem. 2011, 123, 118–142; Angew. Chem. Int. Ed. 2011,
50, 114–137; b) M. Yoshizawa, J. K. Klosterman, M. Fujita,
[14] a) R. Breslow, Acc. Chem. Res. 1991, 24, 159–164; b) D. C.
Rideout, R. Breslow, J. Am. Chem. Soc. 1980, 102, 7816–7817.
Angew. Chem. 2009, 121, 3470–3490; Angew. Chem. Int. Ed. [15] J. I. Gracía, J. A. Mayoral, L. Salvatella, J. Org. Chem. 2005,
2009, 48, 3418–3438; c) M. D. Pluth, R. G. Bergman, K. N.
Raymond, Acc. Chem. Res. 2009, 42, 1650–1659; d) T. S. Kob-
lenz, J. Wassenaar, J. N. H. Reek, Chem. Soc. Rev. 2008, 37,
247–262; e) D. M. Vriezema, M. C. Aragonès, J. A. A. W. Ele-
mans, J. J. L. M. Cornelissen, A. E. Rowan, R. J. M. Nolte,
Chem. Rev. 2005, 105, 1445–1489; f) J. Rebek Jr., Angew. Chem.
2005, 117, 2104–2115; Angew. Chem. Int. Ed. 2005, 44, 2068–
2078; g) M. Yoshizawa, M. Fujita, Pure Appl. Chem. 2005, 77,
1107–1112; h) M. Hof, S. L. Craig, C. Nuckolls, J. Rebek Jr.,
Angew. Chem. 2002, 114, 1556–1578; Angew. Chem. Int. Ed.
2002, 41, 1488–1508.
70, 1456–1458.
[16] To obtain circumstantial evidence that the reaction takes place
in the cavity of 16·(H2O)8, we studied encapsulation of the sub-
strates, methyl vinyl ketone and 2,3-dimethyl-1,3-butadiene, by
the capsule in FC-72. If 2,3-dimethyl-1,3-butadiene was used
as the sole guest at a molar ratio of 7.2:1 (diene/1), the methyl
signal of the encapsulated diene appeared at δ = 0 ppm with
an upfield shift of about 1.4 ppm. Integration of the signal
showed that an average of 4.6 diene molecules was detained in
the capsule. To our surprise, in the case of methyl vinyl ketone
at a molar ratio of 7.1:1 (dienophile/1), only a trace of the
methyl signal of the encapsulated dienophile appeared at δ =
0.78 ppm with an upfield shift of about 0.9 ppm. However, if
both the diene and dienophile were used as double guests at a
molar ratio of 100:1:1 (diene/dienophile/1), integration of the
signals showed that 0.63 diene and 10.8 dienophile molecules
were detained in the capsule at the same time. This result indi-
cates that the presence of 2,3-dimethyl-1,3-butadiene promotes
encapsulation of methyl vinyl ketone by the capsule in the fluo-
rous FC-72 solvent. That is, a large excess amount of the diene
may improve solubility of the dienophile in the fluorous sol-
vent.
[3] a) M. Yoshizawa, M. Tamura, M. Fujita, J. Am. Chem. Soc.
2008, 130, 8160–8161; b) M. Yoshizawa, M. Tamura, M. Fu-
jita, Science 2006, 312, 251–254.
[4] a) M. D. Pluth, R. G. Bergman, K. N. Raymond, Science 2007,
316, 85–88; b) D. Fiedler, R. G. Bergman, K. N. Raymond, An-
gew. Chem. 2004, 116, 6916–6919; Angew. Chem. Int. Ed. 2004,
43, 6748–6751; c) C. J. Brown, R. G. Bergman, K. N. Ray-
mond, J. Am. Chem. Soc. 2009, 131, 17530–17531.
[5] a) T. Murase, Y. Nishijima, M. Fujita, J. Am. Chem. Soc. 2012,
134, 162–164; b) M. Yoshizawa, N. Sato, M. Fujita, Chem.
Lett. 2005, 34, 1392–1393; c) T. Kusukawa, T. Nakai, T. Ok-
ano, M. Fujita, Chem. Lett. 2003, 32, 284–285; d) H. Ito, T.
Kusukawa, M. Fujita, Chem. Lett. 2000, 29, 598–599.
[6] M. L. Merlau, M. P. Mejia, S. T. Nguyen, J. T. Hupp, Angew.
Chem. 2001, 113, 4369–4372; Angew. Chem. Int. Ed. 2001, 40,
4239–4242.
[17] In the solvent-effect experiments, before being submitted to the
reaction conditions the reaction mixtures were homogeneous
even at room temperature if the solvent contained less than
40% FC-72.
[18] a) R. Breslow, U. Maitra, Tetrahedron Lett. 1984, 25, 1239–
1240; b) R. Breslow, U. Maitra, D. Rideout, Tetrahedron Lett.
1983, 24, 1901–1904.
[7] J. Kang, J. Santamaría, G. Hilmersson, J. Rebek Jr., J. Am.
Chem. Soc. 1998, 120, 7389–7390.
[8] Recent literature has demonstrated that the encapsulated (N-
heterocyclic carbene)–Au catalyst within a self-assembled, hy-
Received: May 4, 2013
Published Online: July 1, 2013
Eur. J. Org. Chem. 2013, 4734–4737
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
4737