Organic Process Research & Development 2003, 7, 799−812
A Scalable Synthesis of Meso-Substituted Dipyrromethanes
Joydev K. Laha, Savithri Dhanalekshmi, Masahiko Taniguchi, Arounaguiry Ambroise, and Jonathan S. Lindsey*
Department of Chemistry, North Carolina State UniVersity, Raleigh, North Carolina 27695-8204, U.S.A.
Chart 1
Abstract:
A one-flask synthesis of meso-substituted dipyrromethanes has
been refined. The procedure entails reaction of an aldehyde in
100 equiv of pyrrole as the solvent containing a mild Lewis acid
(e.g., InCl3) at room temperature. Following removal and
recovery of excess pyrrole, the dipyrromethane is obtained by
crystallization. The procedure generates minimal waste and
does not require aqueous/organic extraction, chromatography,
or distillation. The procedure has been scaled linearly to obtain
>100 g of 5-phenyldipyrromethane. The utility of various
analytical methods for characterizing dipyrromethanes has been
investigated.
The first report of a one-flask synthesis entailed reaction
of 4-pyridinecarboxaldehyde with 2.1 mol equiv of pyrrole
in methanol acidified with gaseous HCl, whereupon the
corresponding 5-(4-pyridyl)dipyrromethane precipitated as
the hydrochloride salt.2 In most applications such precipita-
tion is not possible, in which case an excess of pyrrole is
employed to suppress the continued reaction leading to linear
and cyclic oligomers. A number of reports in the early-mid
1990s described methods where the aldehyde (0.04-0.5 M)
was treated with excess pyrrole (2.1-40 mol equiv) in an
acidified organic solvent: BF3‚O(Et)2/CH2Cl2,3 acetic acid/
DMF4 or THF,5 SnCl4/CH2Cl2,6 p-toluenesulfonic acid/
MeOH7,8 or toluene,9 or aqueous HCl/THF.10 Workup
typically entailed several steps including column chroma-
tography, although Hammel et al. employed flash chroma-
tography followed by Kugelrohr distillation.3 In 1994, we
reported a method that employed the reaction of the aldehyde
(∼0.3 M) dissolved in neat pyrrole (∼14 M) with no other
solvent, relying on column chromatography for purification
(“1994 solventless synthesis”).11 Catalysis was achieved at
room temperature with TFA or BF3‚O(Et)2 or, in some
cases,12 upon heating without added acid. The reaction
proceeded in a few minutes at room temperature and afforded
the dipyrromethane in yields of ∼40-60%, but the use of
chromatography for purification limited the scale.
Introduction
Dipyrromethanes occupy a central place in porphyrin
chemistry. The dipyrromethane structures employed in the
synthesis of naturally occurring porphyrins typically bear
substituents at the â-positions and lack any substituent at
the meso position (Chart 1). In the past decade, dipyrro-
methanes lacking â-substituents but substituted at the meso-
position (i.e., the 5-position) have come to play a valuable
role in the preparation of synthetic porphyrins and related
compounds (dipyrrins, calixpyrroles, chlorins, corroles). A
number of stepwise syntheses of dipyrromethanes lacking
â-substituents have been developed,1 while more direct routes
have employed one-flask condensations of pyrrole and the
desired aldehyde.2-16
(1) (a) Treibs, A.; Haberle, N. Liebigs Ann. Chem. 1968, 718, 183. (b) Chong,
R.; Clezy, P. S.; Liepa, A. J.; Nichol, A. W. Aust. J. Chem. 1969, 22, 229.
(c) Clezy, P. S.; Smythe, G. A. Aust. J. Chem. 1969, 22, 239. (d) Wilson,
R. M.; Hengge, A. J. Org. Chem. 1987, 52, 2699. (e) Wallace, D. M.; Leung,
S. H.; Senge, M. O.; Smith, K. M. J. Org. Chem. 1993, 58, 7245. (f) Setsune,
J.; Hashimoto, M. J. Chem. Soc., Chem. Commun. 1994, 657. (g) Setsune,
J.; Hashimoto, M.; Shiozawa, K.; Hayakawa, J.; Ochi, T.; Masuda, R.
Tetrahedron 1998, 54, 1407. (h) Volz, H.; Holzbecher, M. Angew. Chem.,
Int. Ed. Engl. 1997, 36, 1442. (i) Lin, V. S.-Y.; Iovine, P. M.; DiMagno, S.
G.; Therien, M. J. Inorg. Synth. 2002, 33, 55.
(2) Nagarkatti, J. P.; Ashley, K. R. Synthesis 1974, 186.
(3) Hammel, D.; Erk, P.; Schuler, B.; Heinze, J.; Mu¨llen, K. AdV. Mater. 1992,
4, 737.
(4) Vigmond, S. J.; Kallury, K. M. R.; Thompson, M. Anal. Chem. 1992, 64,
2763.
Several groups have made modifications to the 1994
solventless synthesis. Both Boyle and we altered the workup
protocol to facilitate preparative-scale synthesis. Boyle
employed flash chromatography to remove higher oligomers,
followed by Kugelrohr distillation, enabling isolation of as
(9) (a) Staab, H. A.; Carell, T.; Do¨hling, A. Chem. Ber. 1994, 127, 223. (b)
Shipps, G., Jr.; Rebek, J., Jr. Tetrahedron Lett. 1994, 35, 6823. (c) Carell,
T. Ph.D. Thesis, Ruprecht-Karls-Universita¨t Heidelberg, 1993.
(10) (a) Wijesekera, T. P. Can. J. Chem. 1996, 74, 1868. (b) Nishino, N.; Wagner,
R. W.; Lindsey, J. S. J. Org. Chem. 1996, 61, 7534.
(5) Vigmond, S. J.; Chang, M. C.; Kallury, K. M. R.; Thompson, M.
Tetrahedron Lett. 1994, 35, 2455.
(6) (a) Casiraghi, G.; Cornia, M.; Zanardi, F.; Rassu, G.; Ragg, E.; Bortolini,
R. J. Org. Chem. 1994, 59, 1801. (b) Cornia, M.; Binacchi, S.; Del Soldato,
T.; Zanardi, F.; Casiraghi, G. J. Org. Chem. 1995, 60, 4964. Also see:
Casiraghi, G.; Cornia, M.; Rassu, G.; Del Sante, C.; Spanu, P. Tetrahedron
1992, 48, 5619.
(7) Mizutani, T.; Ema, T.; Tomita, T.; Kuroda, Y.; Ogoshi, H. J. Am. Chem.
Soc. 1994, 116, 4240.
(8) (a) Boyle, R. W.; Karunaratne, V.; Jasat, A.; Mar, E. K., Dolphin, D. Synlett
1994, 939. (b) Boyle, R. W.; Xie, L. Y.; Dolphin, D. Tetrahedron Lett.
1994, 35, 5377.
(11) Lee, C.-H.; Lindsey, J. S. Tetrahedron 1994, 50, 11427.
(12) Gryko, D.; Lindsey, J. S. J. Org. Chem. 2000, 65, 2249.
(13) Bru¨ckner, C.; Sternberg, E. D.; Boyle, R. W.; Dolphin, D. Chem. Commun.
1997, 1689.
(14) Boyle, R. W.; Bruckner, C.; Posakony, J.; James, B. R.; Dolphin, D. Org.
Synth. 1998, 76, 287.
(15) Bru¨ckner, C.; Posakony, J. J.; Johnson, C. K.; Boyle, R. W.; James, B. R.;
Dolphin, D. J. Porphyrins Phthalocyanines 1998, 2, 455.
(16) Littler, B. J.; Miller, M. A.; Hung, C.-H.; Wagner, R. W.; O’Shea, D. F.;
Boyle, P. D.; Lindsey, J. S. J. Org. Chem. 1999, 64, 1391.
10.1021/op034083q CCC: $25.00 © 2003 American Chemical Society
Published on Web 09/09/2003
Vol. 7, No. 6, 2003 / Organic Process Research & Development
•
799