ORGANIC
LETTERS
2000
Vol. 2, No. 2
111-113
Synthesis of Porphyrins Bearing
trans-Thiols
,†
Raymond C. Jagessar and James M. Tour*
Department of Chemistry and Biochemistry, UniVersity of South Carolina,
Columbia, South Carolina 29208, and Department of Chemistry and Center for
Nanoscale Science and Technology, Rice UniVersity, MS 222, 6100 Main Street,
Houston, Texas 77005
Received October 21, 1999
ABSTRACT
A route to porphyrins bearing trans-thiols is described using a thioacetyl-containing aldehyde or a thioacetyl-containing dipyrromethane in
the presence of catalytic BF3‚OEt2 followed by oxidation. Metal complexation and ammonium hydroxide induced acetyl removal provides a
route to these important molecular systems for future electronics experiments in which the thiols would serve as the adhesion points to gold
probes.
Future computational systems will likely consist of logic
devices that are ultradense, ultrafast, and molecular-sized.1
With the ultimate goal of constructing a molecular computer
in which the fundamental switching elements and wires are
fabricated from single, or very small packets of, molecules,
we have been studying the responses of several classes of
compounds in nanometer-sized arrays (nanopores) consisting
of ∼1000 molecules per array.2 Fundamental to their
construction is the self-assembly of conjugated molecules
in a 30-nm-diameter cavity; a pore size that is smaller than
the defect density of the self-assembled monolayer or the
underlying metal substrate. The oligomers are generally thiol-
functionalized at the extremities for sandwiched adhesion
between the proximal gold contacts. The first contact is
formed by self-assembly from solution, and the second, by
evaporation of gold to the juxtaposed end. To date, we have
focused primarily on oligo(phenylene ethynylene)s and oligo-
(thiophene ethynylene)s.3 Due to the plethora of interesting
electrical properties that have been reported on porphyrins,4
and to the modifications of their electronic properties through
various meso-substituted patterns and the use of porphyrin/
metal complexation, it behooves us to study this class of
compounds in the nanopore embodiment. We describe here
(3) (a) Jones, L., II; Schumm, J. S.; Tour, J. M. J. Org. Chem. 1997, 62,
1388. (b) Pearson, D. L.; Tour, J. M. J. Org. Chem. 1997, 62, 1376.
(4) Littler, B. J.; Ciringh, Y.; Lindsay, J. S. J. Org. Chem. 1999, 64,
2864, and references therein.
(5) (a) Chen, J.; Reed, M. A.; Asplund, C. L.; Cassell, A. M.; Myrick,
M. L.; Rawlett, A. M.; Tour, J. M.; Van Patten, P. G. App. Phys. Lett.
1999, 75, 624. (b) Rawlett, A.; Chen, J.; Reed, M. A.; Tour, J. M. Polym.
Mater., Sci. Eng. (Am. Chem. Soc., DiV. Polym. Mater.) 1999, 81, 140. (c)
Seminario, J. M.; Zacarias, A. G.; Tour, J. M. J. Am. Chem. Soc. 1999,
121, 411. (d) Allara, D. L.; Dunbar, T. D.; Weiss, P. S.; Bumm, L. A.;
Cygan, M. T. Tour, J. M.; Reinerth, W. A.; Yao, Y.; Kozaki, M.; Jones,
L., II. Molecular Electronics: Science and Technology; Aviram, A.; Ratner,
M., Eds. Ann. N. Y. Acad. Sci. 1998, 852, 349-370. (e) Cygan, M. T.;
Dunbar, T. D.; Arnold, J. J.; Bumm, L. A.; Shedlock, N. F.; Burgin, T. P.;
Jones, L., II; Allara, D. L.; Tour, J. M.; Weiss, P. S. J. Am. Chem. Soc.
1998, 120, 2721. (f) Bumm, L. A.; Arnold, J. J.; Cygan, M. T.; Dunbar, T.
D.; Burgin, T. P.; Jones, L., II; Allara, D. L.; Tour, J. M.; Weiss, P. S.
Science 1996, 271, 1705.
† Address correspondence to Rice University, tour@rice.edu.
(1) (a) Molecular Electronics-Science and Technology; Aviran, A.,
Ratner, R., Eds. Ann. N. Y. Acad. Sci. 1998, 852. (b) Joachim, C.; Roth,
S. Atomic and Molecular Wires; Kluwer: London, 1997. (c) Goldhaber-
Gordon, D.; Montemerlo, M. S.; Love, J. C.; Opiteck, G. J.; Ellenbogen, J.
C. Proc. IEEE 1997, 85, 521. (d) Nanostructures and Mesoscopic Systems;
Kirk, W. P., Reed, M. A., Eds.; Academic: New York, NY, 1992. (e) Tour,
J. M.; Kozaki, M.; Seminario, J. M. J. Am. Chem. Soc. 1998, 120, 8486.
(2) Zhou, C.; Deshpande, M. R.; Reed, M. A.; Jones, L., II; Tour, J. M.
Appl. Phys. Lett. 1997, 71, 611.
10.1021/ol9911728 CCC: $19.00 © 2000 American Chemical Society
Published on Web 12/29/1999