Scheme 6
54.13 (OMe), 47.77 (C4), 38.35 and 37.98 (d, J = 17 Hz, C5), 33.98,
33.90, 33.07, 25.15, 21.26, 20.52 (5CH2). 19F NMR (376 MHz, CDCl3)
d ꢀ134.2 and ꢀ134.8 (br s, F6), ꢀ198.4 and 198.7 (dd, J = 47 and
J = 7 Hz, F9). Analysis. Calc. for C14H18FNO4: C, 55.81; H, 5.69; N,
4.65. Found: C, 55.69; H, 5.75; N, 4.51%.
2 should also lead to the trans fluorolactone. Let’s now examine
the interaction of Selectfluort with 4. It has been established
that polarized double bonds react with Selectfluort, according
to a two stage process.8b Accordingly, a nucleophilic addition of
the double bond to fluorine with cleavage of the fluorine–nitro-
gen bond, neutralization of the developing positive charge on the
a-carbon in A by NR3 (NR3 = TEDA–CH2Cl+BF4ꢀ), would
first give syn addition products B. In the second step, an
intramolecular substitution might lead to the observed lactones
(Scheme 6).
y Crystal data for 11b: C14H17F2NO4, M = 301.29, orthorhombic,
space group Pbca, a = 13.566(3), b = 10.620(2), c = 18.434(4) A,
V = 2655.9(9) A3, Z = 8, Dc = 1.507 g cmꢀ3, m = 0.128 mmꢀ1
(Mo-Ka, l = 0.71073) T = 180 K, 5889 reflections collected; 1597
unique reflections (Rint = 0.149), R1, wR2 [I 4 2s(I)] = 0.0690,
0.1490, R1, wR2 (all data) = 0.1648, 0.2136. CCDC 668553. Crystal
ꢀ
data for 12b: C14H17F2NO4, M = 301.29, triclinic, space group P1,
a = 8.0326(8), b = 8.7779(11), c = 10.5283(10) A, V = 693.44(14) A3,
Z = 2, Dc = 1.443 g cmꢀ3, m = 0.122 mmꢀ1 (Mo-Ka, l = 0.71073)
T = 250 K, 12 253 reflections collected, 3300 unique reflections
(Rint = 0.0493), R1, wR2 [I 4 2s(I)] = 0.0394, 0.0486 R1, wR2
(all data) = 0.0672, 0.0709. CCDC 673543.
The formation of the gem-difluoro lactone 11 is reminiscent of
the transformation of 2-fluoro enol ethers into gem-difluoro
compounds.10,11 Therefore, competition between the formation
of 11 and 12 might indeed exist. According to calculations
(Scheme 5 (III)) the enthalpies of formation of the 3-gem
difluoro cation and the 3,5-difluoro-substituted intermediate
carbocationic species are roughly the same. Therefore, the ratio
of 11 to 12 should depend on the relative rates of transformation
of the last intermediate B. Since in both intermediates (X = F,
X = H) the introduced fluorine is axial, cis with respect to
NR3+, a similar stabilizing effect might be observed,12 and thus
a similar rate of the intramolecular lactonization of both inter-
mediates B (X = H and X = F), the influence of either one or
two fluorine atoms on the a-carbon being almost the same.
Our current efforts include expanding the scope of these
reactions to polyfluorinated dihydropyridines, getting a deeper
insight into the mechanism of these transformations, and
achieving enantioselective lactonizations.
1 (a) H. Rudler, B. Denise, Y. Xu, A. Parlier and J. Vaissermann,
Eur. J. Org. Chem., 2005, 3724–3744; (b) Y. Xu, H. Rudler, B.
Denise, A. Parlier, P. Chaquin and P. Herson, Tetrahedron Lett.,
2006, 47, 4541–4544.
2 For related transformations see, P. Langer, Eur. J. Org. Chem.,
2007, 2233–2238, and references therein.
3 L. F. Lourie, Y. A. Serguchev, G. V. Shevchenko, M. V. Ponomenko,
A. N. Chernega, E. B. Rusanov and J. A. K. Howard,
J. Fluorine Chem., 2006, 127, 377–385.
4 (a) W.-D. Meng and F.-L. Qing, Curr. Top. Med. Chem., 2006, 6,
1499–1528; (b) B. E. Smart, J. Fluorine Chem., 2001, 109, 3–11;
(c) J. P. Begue and D. Bonnet-Delpon, Chimie Bioorganique
´ ´
´
et Medicinale du Fluor, EDP Sciences/CNRS Eds, Paris,
France, 2005; (d) R. P. Singh and J. M. Shree, Acc. Chem. Res.,
2004, 37, 31–34; (e) D. O’Hagan, Chem. Soc. Rev., 2008, 37,
308–319.
5 R. E. Banks, V. Murtagh and E. Tsiliopoulous, J. Fluorine Chem.,
1991, 52, 389–401.
6 R. Lavilla, O. Coll, R. Kumar and J. Bosch, J. Org. Chem., 1998,
63, 2728–2730.
7 G. A. Rood, J. M. DeHaan and R. Zibuck, Tetrahedron Lett.,
1996, 37, 157–158.
Notes and references
1
8 (a) R. D. Bach and H. F. Henneike, J. Am. Chem. Soc., 1970, 92,
5589–5602; (b) S. P. Vincent, M. D. Burkart, C.-Y. Tsai, Z. Zhang
and C.-H. Wong, J. Org. Chem., 1999, 64, 5264–5279; (c) M.
Albert, K. Dax and J. Ortner, Tetrahedron, 1998, 54, 4839–4848;
(d) R. N. Haszeldine, I-ud-D. Mir and A. E. Tipping, J. Chem.
Soc., Perkin Trans. 1, 1976, 2349–2353; (e) T. Tidwell, Angew.
Chem., Int. Ed. Engl., 1984, 23, 20–32.
9 M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S.
Gordon, J. J. Jensen, S. Koseki, N. Matsunaya, K. A. Nguyen, S.
Su, T. L. Windus, M. Dupuis and J. A. Montgomery, J. Comput.
Chem., 1993, 14, 1337–1363.
10 C. G. Francisco, C. C. Gonzalez, N. R. Paz and E. Suarez, Org.
Lett., 2003, 5, 4171–4173.
11 M. J. Tozer and T. F. Herpin, Tetrahedron, 1996, 52, 8619–8683.
12 N. E. J. Gooseman, D. O’Hagan, M. J. G. Peach, A. M. Z. Slawin,
D. J. Tozer and R. J. Young, Angew. Chem., Int. Ed., 2007, 46,
5904–5908.
z 11b: White solid, mp 110 1C, 40%. H NMR (400 MHz, CDCl3) d
6.88 and 6.75 (d, J = 8 Hz, 1H, H7), 6.20 and 6.03 (d, J = 4 Hz, 1H,
H1), 5.04 (m, 1H, H6), 3.84 (s, 3H, OMe), 3.00 (m, 1H, H5), 2.20–1.00
(m, 10H, 5CH2). 13C NMR (100 MHz, CDCl3) d 172.67 (C3), 152.23
and 151.98 (NCO), 122.64 and 122.46 (C7), 115.97 (t, J = 248 Hz, C9),
103.22 (C6), 79.02 and 78.31 (d, J = 34 Hz, C1), 54.16 (OMe), 48.44
(C4), 36.10 (m, C5), 35.98, 35.79, 35.60, 34.89, 34.78, 34.28, 24.98,
20.90, 20.79 (5CH2). 19F NMR (376 MHz, CDCl3) d ꢀ112.1 (d, JFF
=
251 Hz, F19), ꢀ117.2 (d, J = 251 Hz, F29). Analysis. Calc. for
C14H17F2NO4: C, 55.81; H, 5.69; N, 4.65. Found: C, 55.78; H, 5.71;
N, 4.59%. 12b: White solid, mp 140 1C, 32%. 1H NMR (400 MHz,
CDCl3) d 7.03 and 6.90 (d, J = 9 Hz, 1H, H7), 6.33 and 6.17 (br s, 1H,
H1), 5.31 (d, J = 47 Hz, 1H, H9), 3.83 (s, 3H, OMe), 3.18 (t, J = 9 Hz,
1H, H5), 2.10–1.35 (m, 10H, 5CH2). 13C NMR (100 MHz, CDCl3) d
172.62 (C3), 152.59 and 152.19 (NCO), 146.09 and 145.39 (d, J = 247
Hz, C6), 107.61 and 107.28 (d, J = 40 Hz, C7), 78.32 and 77.95 (dd, J
= 200 and J = 6 Hz, C9), 76.70 and 76.44 (t, J = 26 Hz, C1) 54.18 and
ꢁc
This journal is The Royal Society of Chemistry 2008
4152 | Chem. Commun., 2008, 4150–4152