2134
S. C. Turner et al. / Bioorg. Med. Chem. Lett. 13 (2003) 2131–2135
As with the amine analogues, we see a pattern in the
alkyne series (Table 2) where the five- and six-membered
ring analogues are the most active (2 and 33). An inter-
esting stereochemical preference for the (S) enantiomer
is observed in the case of the 3-hydro-
xymethylpyrrolidines 37 and 38. The alkene derivative
39 was found to be of similar potency to its alkyne
counterpart. In Figure 2, we see that reduction of the
aromatic ring reduces potency (40) while the introduc-
tion of a thiocyclohexyl ring is better tolerated (41). The
most active amino analogues were much more potent
than the corresponding alkyne derivatives (e.g., 1 100-
fold >33) but this ratio drops to parity for weaker
analogues. The expansion of the cycloalkyl ring from
seven- to eight-membered (42) is detrimental to activity.
Table 3. Binding affinities of selected compounds at human H3, H1
and H2 receptors
Compd Human H3L Ki Human H1-HR Ki Human H2-HR Ki
(nM)
(nM)
(nM)
1
2
22
23
9.7
80
6.6
1.7
7696
1000
4085
15,733
10,131
1729
3781
3211
Values are the mean of four experiments.
In summary, we have identified a novel structural class
of H3 antagonists based upon a cycloheptaquinoline
core. Two series of compounds, bearing either an amino
substituent or an alkyne linker at the 11-position, were
shown to have moderate to high affinity and selectivity
for the H3 receptor.
A selection of the most potent compounds was also
evaluated for H3 selectivity with respect to the H1 and
H2 receptors (Table 3). The amino substituted ana-
logues were highly selective for H3: 600–6000-fold
selective over H1 and 500–1000-fold selective over H2.
The selectivity was markedly lower for the alkynyl ana-
logue 2 with 13- and 24-fold ratios, respectively.
References and Notes
1. (a) Leurs, R.; Watanabe, T.; Timmerman, H. Trends Phar-
macol. Sci. 2001, 22, 337. (b) Hough, B. L. Mol. Pharmacol.
2001, 59, 415. (c) Oda, T.; Morikawa, N.; Saito, Y.; Masuho,
Y.; Matsumoto, S. J. Biol. Chem. 2000, 275, 36781.
2. Kinsolving, C. R.; Munro, N. L.; Carr, A. A. Pharmacolo-
gist 1973, 15, 221.
Table 2. Synthesis of 11-alkynyl compounds and binding affinitiesa at
human cloned H3 and rat cortical H3 receptors
3. Black, J. W.; Duncan, W. A. M.; Durant, G. J.; Ganellin,
C. R.; Parsons, E. M. Nature 1972, 236, 385.
4. Arrang, J. M.; Garbarg, M.; Schwartz, J. C. Nature 1983,
302, 832.
5. Schlicker, E.; Kathmann, M. In The Histamine H3 Recep-
tor; A Target for New Drugs, 1st ed.; Leurs, R., Timmermman,
H., Eds.; Elsevier Science: Amsterdam, 1998; p 59.
6. (a) Tedford, C. E. In The Histamine H3 Receptor; A Target
for New Drugs, 1st ed.; Leurs, R., Timmermman, H., Eds.;
Elsevier Science: Amsterdam, 1998; p 269. (b) Leurs, R., Vol-
linga, R. C., Timmerman, H. In Progress in Drug Research,
Jacker, E., Ed., Birkhausser: Basel, 1995; p 107.
7. Arrang, J.-M.; Garbarg, M.; Lancelot, J. C.; Lecomte,
J. M.; Pollard, H.; Robba, M.; Schunack, W.; Schwartz, J.-C.
Nature 1987, 327, 117.
8. Tedford, C. E.; Hoffmann, M.; Seyedi, N.; Maruyama, R.;
Levi, R.; Yates, S. L.; Ali, S. M.; Phillips, J. G. Eur. J. Phar-
macol. 1998, 351, 307.
9. Krause, M.; Ligneau, X.; Stark, H.; Garbarg, M.;
Schwartz, J.-C.; Schunack, W. J. Med. Chem. 1998, 41,
4171.
10. Ligneau, X.; Lin, J. S.; Vanni-Mercier, G.; Jouvet, M.;
Muir, J. L.; Ganellin, C. R.; Stark, H.; Elz, S.; Schunack, W.;
Schwartz, J.-C. J. Pharmacol. Exp. Ther. 1998, 287, 658.
11. De Esch, I. J.; Mills, J. E.; Perkins, T. D.; Romeo, G.;
Hoffmann, M.; Wieland, K.; Leurs, R.; Menge, W. M.;
Nederkoorn, P. H.; Dean, P. M.; Timmerman, H. J. J. Med.
Chem. 2001, 44, 1666.
12. Linney, I. D.; Buck, I. M.; Harper, E. A.; Kalindjian,
S. B.; Pether, M. J.; Shankley, N. P.; Watt, G. F.; Wright, P. T.
J. Med. Chem. 2000, 43, 2362.
13. Apelt, J.; Ligneau, X.; Pertz, H. H.; Arrang, J.-M.;
Ganellin, C. R.; Schwartz, J.-C.; Schunack, W.; Stark, H.
J. Med. Chem. 2002, 45, 1128.
Compd
R
Method of Yield Rat cortex Human
Preparation
H3-HR
pKi*
H3L
pKi*
2
B
B
59
29
77
50
38
19
37
41
99
6.39
6.16
6.19
<6
7.10
6.41
6.67
<6
32
33
34
35
36
37
38
39
C
C
C
C
C
C
—
<6
6.14
6.36
6.60
6.02
7.06
<6
6.21
<6
14. (a) Faghih, R.; Dwight, W.; Gentles, R. G.; Phelan, K.;
Esbenshade, T. A.; Ireland, L.; Miller, T.; Kang, C. H.; Fox,
G. B.; Gopalakrishnan, S.; Hancock, A. A.; Bennani, Y. L.
Bioorg. Med. Chem. Lett. 2002, 12, 2031. (b) Faghih, R.;
Dwight, W.; Black, L.; Liu, H.; Gentles, R. G.; Phelan, K.;
Esbenshade, T. A.; Ireland, L.; Miller, T.; Kang, C. H.;
6.56
aSee corresponding footnote for Table 1.