10.1002/cssc.201601570
ChemSusChem
COMMUNICATION
MS+1 by the way of metal hydride (Scheme S2). Expectedly,
GC-MS analysis shows the molecular ion peak of the generated
GVL only containing an additional 1 amu (m/z = 101), which
explicitly substantiates the happening of direct hydrogen transfer
over m-PhPZr (Fig. S16).
We wish to thank the financial supports from Nanjing Agricultural
University (68Q-0603), Postdoctoral Science Foundation of
China (2016M600422), and Jiangsu Postdoctoral Research
Funding Plan (1601029A).
Keywords: nanoparticles • heterogeneous catalysis • cascade
reaction • mesoporous material • biomass conversion
Delighted by the pronounced catalytic performance of m-PhPZr
in CTH of EL to GVL, the substrate scope was further extended
to other carbonyl compounds including aliphatic and aromatic
ketones, and biomass-derived aldehydes (Table 2). All
examined ketones and aldehydes can be efficiently catalyzed by
m-PhPZr to produce corresponding alcohols in high yields.
Notably, harsh reaction conditions are required for CTH of
ketones (entries 1-2), due to the steric hindrance and electron
donating nature of the alkyl groups in these molecules. In
contrast, biomass derivatives like citral, cinnamaldehyde, furfural,
5-methylfurfural, HMF, and veratraldehyde give near quantitative
yields of corresponding alcohols in the presence of m-PhPZr
under mild conditions (entries 3-8). These results indicate the
great potential applications of m-PhPZr for the CTH reactions in
both organic synthesis and biomass transformation.
[1]
a) R. J. Kuppler, D. J. Timmons, Q. R. Fang, J. R. Li, T. A. Makal, M. D.
Young, D. Yuan, D. Zhao, W. Zhuang, H. C. Zhou, Coord. Chem. Rev.
2009, 253, 3042; b) Y.S. Bae, Snurr, R. Q. Angew. Chem. Int. Ed. 2011,
50, 11586; c) P. Horcajada, R. Gref, T. Baati, P. K. Allan, G. Maurin, P.
Couvreur, G. Férey, R. E. Morris, C. Serre, Chem. Rev. 2012, 112,
1232; d) H. C. J. Zhou, S. Kitagawa, Chem. Soc. Rev. 2014, 43, 5415;
e) Y. He, W. Zhou, G. Qian, B. Chen, Chem. Soc. Rev. 2014, 43, 5657;
f) D.Farrusseng, Angew. Chem. Int. Ed. 2015, 54, 7480.
a) Z. J. Lin, J. Lü, M. Hong, R. Cao, Chem. Soc. Rev. 2014, 43, 5867-
5895; b) J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C. Y. Su, Chem.
Soc. Rev. 2014, 43, 6011; c) T. Zhang, W. Lin, Chem. Soc. Rev. 2014,
43, 5982.
[2]
[3]
J. Y. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T.
Hupp, Chem. Soc. Rev. 2009, 38, 1450.
[4]
[5]
[6]
Z. Zhang, M. J. Zaworotko, Chem. Soc. Rev. 2014, 43, 5444.
W. Xuan, C. Zhu, Y. Liu, Y. Cui, Chem. Soc. Rev. 2012, 41, 1677.
a) K. J. Gagnon, H. P. Perry, A. Clearfield, Chem. Rev. 2012, 112, 1034;
b) J. Veliscek-Carolan, T. L. Hanley, V. Luca, Sep. Purif. Technol. 2014,
129, 150.
Table 2. Results of m-PhPZr-catalyzed CTH of different carbonyl compounds
to alcohols
[7]
[8]
[9]
A. Cleatfield, Curr. Opin. Solid State Mater. Sci. 1998, 1, 268.
Y. P. Zhu, T. Z. Ren, Z. Y. Yuan, Catal. Sci. Technol. 2015, 5, 4258.
a) S. G. Wettstein, D. M. Alonso, E. I. Gürbüz, J. A. Dumesic, Curr.
Opin. Chem. Eng. 2012, 1, 218; b) J. S. Luterbacher, D. Martin Alonso,
J. A. Dumesic, Green Chem. 2014, 16, 4816; c) A. Corma, S. Iborra, A.
Velty, Chem. Rev. 2007, 107, 2411; d) G. W. Huber, S. Iborra, A.
Corma, Chem. Rev. 2006, 106, 4044.
a) H. Li, Z. Fang, R. L. Smith Jr., S. Yang, Prog. Energ. Combust. 2016,
55, 98; b) C. H. Zhou, X. Xia, C. X. Lin, D. S. Tong, J. Beltramini,
Chem. Soc. Rev. 2011, 40, 5588; c) J. C. Serrano-Ruiz, R. M. West, J.
A. Dumesic, Ann. Rev. Chem. Biomol. Eng. 2010, 1, 79; d) H. Li, Z.
Fang, J. Luo, S. Yang, Appl. Catal. B: Environ. 2017, 200, 182.
a) J. Lee, Y. Xu, G. W. Huber, Appl. Catal. B: Environ. 2013, 140-141,
98; b) M. Besson, P. Gallezot, C. Pinel, Chem. Rev. 2014, 114, 1827.
a) M. J. Gilkey, B. Xu, ACS Catal. 2016, 6, 1420; b) A. H. Valekar, K. H.
Cho, S. K. Chitale, D. Y. Hong, G. Y. Cha, U-H. Lee, D. W. Hwang, C.
Serre, J. S. Chang, Y. K. Hwang, Green Chem. 2016, 18, 4542.
D. Wang, D. Astruc, Chem. Rev. 2015, 115, 6621.
a) X. Tang, H. Chen, L. Hu, W. Hao, Y. Sun, X. Zeng, L. Lin, S. Liu,
Appl. Catal. B: Environ. 2014, 147, 827; b) H. Li, Z. Fang, S. Yang,
ACS Sustainable Chem. Eng. 2016, 4, 236; c) K. Yan, Y. Yang, J. Chai,
Y. Lu, Appl. Catal. B: Environ. 2015, 179, 292; d) W. Hao, W. Li, X.
Tang, X. Zeng, Y. Sun, S. Liu, L. Lin, Green Chem. 2016, 18, 1080; e)
H. Li, Z. Fang, S. Yang, ChemPlusChem 2016, 81, 135; f) J. Song, B.
Zhou, H. Zhou, L. Wu, Q. Meng, Z. Liu, B. Han, Angew. Chem. Int. Ed.
2015, 54, 9399; Angew. Chem. 2015, 127, 9531; g) H. Li, J. He, A.
Riisager, S. Saravanamurugan, B. Song, S. Yang, ACS Catal. 2016, 6,
7722;
C. M. Nam, J. S. Lee, Y. G. Kim, Korean J. Chem. Eng. 1993, 10, 93.
F. Odobel, B. Bujoli, D. Massiot, Chem. Mater. 2001, 13, 163.
F. Hibbert, J. Chem. Soc., Perkin Trans. 1978, 11, 1171.
F. Liguori, C. Moreno-Marrodan, P. Barbaro, ACS Catal. 2015, 5, 1882.
J. Song, L. Wu, B. Zhou, H. Zhou, H. Fan, Y. Yang, Q. Meng, B. Han,
Green Chem. 2015, 17, 1626.
Temp
(ºC )
Time
(h)
Conv
(%)[b]
Yield
(%)[b]
Reactant
Product
Entry
1
160
8
97
96
2
3
160
6
99
99
[10]
120
6
96
94
4
5
6
7
120
120
120
120
6
2
2
2
98
98
99
98
93
>99
>99
>99
[11]
[12]
8
120
2
98
97
[13]
[14]
[a] Reaction conditions: 2 mmol substrate, 0.14 g m-PhPZr, and 10 mL i-PrOH.
[b] Conversion (Conv) and yield were quantified using GC.
In brief, a facile and effective approach has been developed to
prepare a series of orderly layered and mesoporous zirconium
phosphonate by simply reacting ZrCl4 with different
xylylenediphosphonic acids. The resulting m-PhPZr nanohybrid
shows prominent performance for CTH of various carbonyl
compounds to corresponding alcohols, particularly for cascade
CTH-cyclization of EL to GVL under mild conditions. Deuterium
labeling experiments affirm the CTH reaction proceeding
through direct intermolecular hydrogen transfer, other than metal
hydride route. Comprehensive studies indicate that both Lewis
acidic (Zr4+) and basic (PO32-) moieties contribute significantly to
the excellent catalytic activity of m-PhPZr. The robust and
heterogeneous nanohybrid shows great potential for biomass
valorization and organic transformations mediated by acid-base
couple sites, and the simple method can be used to synthesize
other organic-inorganic functional hybrids.
[15]
[16]
[17]
[18]
[19]
[20]
[21]
J. Wang, S. Jaenicke, G. K. Chuah, RSC Adv. 2014, 4, 13481.
a) B. Tang, W. Dai, X. Sun, G. Wu, N. Guan, M. Hunger, L. Li, Green
Chem. 2015, 17, 1744; b) H. J. M. Bosman, A. P. Pijpers, A. W. M. A.
Jaspers, J.Catal. 1996, 161, 551.
M. Chia, J. A. Dumesic, Chem. Commun. 2011, 47, 12233.
M. Ohara, A. Takagaki, S. Nishimura, K. Ebitani, Appl. Catal. A: Gen.
2010, 383, 149.
S. Yan, S. O. Salley, K.Y. Simon Ng, Appl. Catal. A: Gen. 2009, 353,
203.
M. J. Gilkey, P. Panagiotopoulou, A. V. Mironenko, G. R. Jenness, D.
G. Vlachos, B. Xu, ACS Catal. 2015, 5, 3988.
[22]
[23]
[24]
[25]
Acknowledgements
This article is protected by copyright. All rights reserved.