X. Zhu et al. / Journal of Catalysis 281 (2011) 21–29
29
Oklahoma Bioenergy Center is greatly appreciated. The authors
thank Gregory W. Strout and Preston Larson for their help with
TEM and SEM measurements, respectively.
100
80
60
40
20
0
H2O on
H2O off
Appendix A. Supplementary material
Supplementary data associated with this article can be found, in
References
Pt/HBeta (W/F=0.083 h)
HBeta (W/F=0.25 h)
Pt/SiO2 (W/F=0.5 h)
[1] D. Mohan, C.U.P. Pittman Jr., P.H. Steele, Energy Fuels 20 (2006) 848.
[2] G.W. Huber, S. Iborra, A. Corma, Chem. Rev. 106 (2006) 4044–4098.
[3] S. Crossley, J. Faria, M. Shen, D.E. Resasco, Science 327 (2010) 68–72.
[4] J. Jae, G.A. Tompsett, Y.C. Lin, T.R. Carlson, J.C. Shen, T.Y. Zhang, B. Yang, C.E.
Wyman, W.C. Conner, G.W. Huber, Energy Environ. Sci. 3 (2010) 358–365.
[5] D.E. Resasco, S. Crossley, AIChE J. 55 (2009) 1082–1086.
[6] E. Furimsky, Appl. Catal. A 199 (2000) 147–190.
[7] J.B. Bredenberg, M. Huuska, J. Räty, M. Korpio, J. Catal. 77 (1982) 242–247.
[8] H. Weigold, Fuel 61 (1982) 1021–1026.
[9] S.J. Hurff, M.T. Klein, Ind. Eng. Chem. Fund. 22 (1983) 426–430.
[10] E.O. Odebunmi, D.F. Ollis, J. Catal. 80 (1983) 56–64.
[11] D.C. Elliott, Energy Fuels 21 (2007) 1792–1815.
0
1
2
3
4
5
Time on stream (h)
Fig. 10. Effect of water addition on anisole conversion over HBeta, 1% Pt/HBeta, and
1% Pt/SiO2 catalysts. Reaction conditions: T = 400 °C, P = 1 atm, H2/Anisole
molar = 50 at all times, H2O/An molar = 1.5 (water started being injected at TOS =
2 h and stopped at TOS = 3.5 h).
those of the dry runs. The relatively minor differences in product
distribution indicate that, in the presence of water, the deoxygen-
ation reactions are somewhat inhibited, which would indicate that
the enhancement of the anisole conversion by hydrolysis (acid-
catalyzed primary reaction) is not accompanied by a comparable
enhancement in the (metal catalyzed) secondary reaction.
[12] R.K.M.R. Kallury, W.M. Restivo, T.T. Tidwell, D.G.B. Boocock, A. Crimi, J.
Douglas, J. Catal. 96 (1985) 535–543.
[13] B.S. Gevert, J.E. Otterstedt, F.E. Massoth, Appl. Catal. 31 (1987) 119–131.
[14] E. Laurent, B. Delmon, Appl. Catal. A 109 (1994) 77–96.
[15] S.B. Gevert, M. Eriksson, P. Eriksson, F.E. Massoth, Appl. Catal. A 117 (1994)
151–162.
[16] T.R. Viljava, R.S. Komulainen, A.O.I. Krause, Catal. Today 60 (2000) 83–92.
[17] T.R. Viljava, E.R.M. Saari, A.O.I. Krause, Appl. Catal. A 209 (2001) 33–43.
[18] M. Ferrari, R. Maggi, B. Delmon, P. Grange, J. Catal. 198 (2001) 47–55.
[19] F.E. Massoth, P. Politzer, M.C. Concha, J.S. Murry, J. Jakowski, J. Simons, J. Phys.
Chem. B 110 (2006) 14283–14291.
4. Conclusions
[20] Y. Romero, F. Richard, S. Brunet, Appl. Catal. B 98 (2010) 213–223.
[21] M.J. Girgis, B.C. Gates, Ind. Eng. Chem. Res. 30 (1991) 2021–2058.
[22] A.G. Gayubo, A.T. Aguayo, A. Atutxa, R. Aguado, M. Olazar, J. Bilbao, Ind. Eng.
Chem. Res. 43 (2004) 2619–2626.
[23] A.G. Gayubo, A.T. Aguayo, A. Atutxa, R. Aguado, J. Bilbao, Ind. Eng. Chem. Res.
43 (2004) 2610–2618.
[24] P.D. Chantal, S. Kaliaguine, J.L. Grandmaison, Appl. Catal. 18 (1985) 133–145.
[25] P.A. Horne, P.T. Williams, Renew. Energy 7 (1996) 131–144.
[26] J.D. Adjaye, N.N. Bakhshi, Fuel Process. Technol. 45 (1995) 185–202.
[27] J.D. Adjaye, N.N. Bakhshi, Biomass Bioenergy 8 (1995) 131–149.
[28] X.L. Zhu, R.G. Mallinson, D.E. Resasco, Appl. Catal. A 279 (2010) 181.
[29] C.D. Chang, A.J. Silvestri, J. Catal. 47 (1977) 249.
[30] X.L. Zhu, L.L. Lobban, R.G. Mallinson, D.E. Resasco, J. Catal. 271 (2010) 88–98.
[31] T.Q. Hoang, X.L. Zhu, T. Sooknoi, D.E. Resasco, R.G. Mallinson, J. Catal. 271
(2010) 201–208.
[32] C. Zhao, Y. Kou, A.A. Lemonidou, X.B. Li, J.A. Lercher, Angew. Chem. Int. Ed. 48
(2009) 3987–3990.
[33] C. Zhao, Y. Kou, A.A. Lemonidou, X.B. Li, J.A. Lercher, Chem. Commun. 46 (2010)
412–414.
[34] D.Y. Hong, S.J. Miller, P.K. Agrawal, C.W. Jones, Chem. Commun. 46 (2010)
1038–1040.
[35] C.A. Fisk, T. Morgan, Y.Y. Ji, M. Crocker, C. Crofcheck, S.A. Lewis, Appl. Catal. A
358 (2009).
Bifunctional catalytic hydrodeoxygenation of anisole to ben-
zene, toluene, and xylenes has been demonstrated at 400 °C and
atmospheric pressure. Brønsted acid sites in HBeta catalyze the
methyl transfer reactions from methoxyl to the phenolic ring.
Metallic Pt only catalyzes demethylation, hydrodeoxygenation,
and hydrogenation reactions, sequentially. Addition of Pt to the
zeolite accelerates both methyl transfer reactions and hydrodeox-
ygenation reactions, with low hydrogen consumption and low car-
bon losses as methane. The presence of the metal improves the rate
of cleavage of O–CH3 and thus synergistically improves the overall
rate of Brønsted acid catalyzed methyl transfer reactions. This may
be interpreted as being due to a partial hydrogenation of the phe-
nolic ring near the Caromatic–OH bond on Pt that removes the delo-
calization of the out of plane O lone pair orbital with the phenolic
ring
p bond orbital, followed by rapid dehydration over an adjacent
Brønsted acid site, re-forming the double bond and, therefore, the
aromatic system.
[36] A. Gutierrez, R.K. Kaila, M.L. Honkela, R. Slioor, A.O.I. Krause, Catal. Today 147
(2009) 239–246.
[37] J.Q. Bond, D.M. Alonso, D. Wang, R.M. West, J.A. Dumesic, Science 327 (2010)
1110–1114.
[38] W.E. Fameth, R.J. Gorte, Chem. Rev. 95 (1995) 615–635.
[39] T.J.G. Kofke, R.J. Gorte, G.T. Kokotailo, W.E. Farneth, J. Catal. 115 (1989) 265–
272.
In addition, the addition of metal to the acidic zeolite improves
the stability of the catalyst with a moderate reduction in coke for-
mation. Further optimization of the properties of metal/zeolite sys-
tems might lead to an effective catalyst for the hydrodeoxygenation
of phenolics-rich bio-oils.
[40] Y. Takagi, S. Nishimura, K. Taya, K. Hirota, J. Catal. 8 (1967) 100–104.
[41] P.E. Ruiz, K. Leiva, R. Garcia, P. Reyes, J.L.G. Fierro, N. Escalona, Appl. Catal. A
348 (2010) 78–83.
Acknowledgements
[42] A. Popov, E. Kondratieva, J.M. Goupil, L. Mariey, P. Bazin, J.P. Gilson, A. Travert,
F. Mauge, J. Phys. Chem. C 114 (2010) 15661–15670.
Financial support from the National Science Foundation EPSCOR
(0814361), the Department of Energy (DE-FG36GO88064), and the