Please do not adjust margins
Dalton Transactions
Page 4 of 6
COMMUNICATION
Journal Name
species immediately at 35 °C (Fig. S16). The order of alcohol the Brønsted-acidic oxidant, will expand the use of
25
yields was 1 > 2 > 4 > 3 > CoII(acac)2. The initial TOF of the most tris(carbene)borate complexes to other catalyst designs.
DOI: 10.1039/C8DT04469D
active complex 1 reached ~1050 h−1, although the catalytic
reaction was terminated at 30 min and the oxidant utilization This research was funded by CREST, JST (JPMJCR16P1) and
efficiency was 53%. When subjected to the same reaction Kanagawa University (ordinary budget: 411).
conditions, an N4-donating ligand-supported cobalt complex,
[CoII(OAc)(LtBu)]+ where LtBu denotes N,N-bis(2-pyridylmethyl)- There are no conflicts to declare.
N-[(1-R-1H-1,2,3-triazol-4-yl)methyl]amine
(Fig.
S17),
demonstrated higher oxidant utilization efficiency (83 %) and
comparable alcohol selectivity (A/(K + L) = 5.4), however, the
initial TOF (950 h−1) was observed to be lower when compared
with 1.20 The initial TOF of 2 was ~50% of that of 1, although
the final oxidant utilization efficiency was similar to that of 1.
The significantly higher TOF of 1 is considered to be attributed
to the [PhB(MeIm)3]− ligand having excellent electron-donating
properties compared with other ligands, including N4-donating
pyridylamines.19–21 The catalytic reaction mediated by
CoII(acac)2 at 35 °C was terminated after 30 min with an
oxidant utilization efficiency of 40%. When increasing the
reaction temperature to 35 °C, the catalyst derived from
Co(acac)2 was not sufficiently stable. Conversely, the
scorpionate ligands [PhB(MeIm)3]−, Tp* and ToM appear to
significantly enhance the thermal stabilities of their
homogeneous cobalt catalysts relative that derived from
CoII(acac)2.
Notes and references
1. (a) N-Heterocyclic Carbenes: From Laboratory Curiosities to
Efficient Synthetic Tools: Edition 2 (RSC Catalysis Series No.27),
ed. S. Diez-Gonzalez, The Royal Society of Chemistry, London,
2017; (b) N-Heterocyclic Carbenes in Transition Metal Catalysis
and Organocatalysis (Catalysis by Metal Complexes, vol.32), ed.
C. S. J. Cazin, Springer Science+Business Media, Berlin, 2011; (c)
N-Heterocyclic Carbenes in Transition Metal Catalysis (Topics in
Organometallic Chemistry, vol.21), ed. F. Glorius, Springer-
Verlag, Berlin, Heidelberg, 2007.
2. V. Charraa, P. de Frémonta and P. Braunsteina, Coord. Chem.
Rev., 2017, 341, 53-176.
3. (a) C. Santini, M. Marinelli and M. Pellei, Eur. J. Inorg. Chem.
2016, 2312-2331; (b) A. Nasr, A. Winkler and M. Tamm, Coord.
Chem. Rev., 2016, 316, 68-124; (c) J. M. Smith, Comments.
Inorg. Chem., 2008, 29, 189-233; (d) J. Cheng, L. Wang, P. Wang
and L. Deng, Chem. Rev., 2018, 118, 9930-9987.
Commun., 2014, 50, 11454-11457; (b) J. W. Kück, A. Raba, I. I.
E. Markovits, M. Cokoja and F. E. Kühn, ChemCatChem, 2014, 6,
1882-1886; (c) T. Yagyu, K. Yano,T. Kimata and K. Jitsukawa,
Organometallics, 2009, 28, 2342-2344; (d) M. J. Schultz, S. S.
Hamilton, D. R. Jensen and M. S. Sigman, J. Org. Chem., 2005,
70, 3343-3352; (e) F. Hanasaka, K. Fujita and R. Yamaguchi,
Organometallics, 2004, 23, 1490-1492; (f) M. Poyatos, J. A.
Mata, E. Falomir, R. H. Crabtree and E. Peris, Organometallics,
2003, 22, 1110.
5. (a) X. Hu, I. Castro-Rodriguez and K. Meyer, J. Am. Chem. Soc.,
2004, 126, 13464-13473; (b) A. A. Danopoulos, J. A. Wright, W.
B. Motherwell and S. Ellwood, Organometallics, 2004, 23,
4807-4810; (c) S. Dürr, B. Zarzycki, D. Ertler, I. Ivanović-
Burmazović and U. Radius, Organometallics, 2012, 31, 1730-
1742.
Table 2 Catalytic reactions at 35 °C.
A /
(K+L)
Reaction
Products / mol
Cat.
TON a
time / min
A
K
L
Cl
Blank
1
2
3 b
4 b
CoII(acac)2
a
180
30
60
180
60
30
69.4
731.7
675.0 116.7
587.2 104.1
653.9 149.3
473.3 130.2
0.5
88.8
2.1
3.8
−
26.6
5.8
4.2
3.8
3.6
3.2
36.6
43.1
52.4
32.8
17.2
70.0
57.0
36.2
47.9
24.8
526.0
525.8
468.1
533.0
396.4
b
TON = {cyclohexanol (A) + chlorocyclohexane (Cl) + 2
{cyclohexanone (K) + ε-caprolactone (L)}} / cobalt compound.
b From ref. 17.
6. R. E. Cowley, R. P. Bontchev, E. N. Duesler and J. M. Smith,
Inorg. Chem., 2006, 45, 9771-9779.
7. R. E. Cowley, R. P. Bontchev, J. Sorrell, O. Sarracino, Y. Feng, H.
Wang and J. M. Smith, J. Am. Chem. Soc., 2007, 129, 2424-
2425.
8. J. J. Scepaniak, C. G. Margarit, R. P. Bontchev and J. M. Smith,
Acta Cryst., 2013, C69, 968-971.
9. M. K. Goetz, E. A. Hill, A. S. Filatov and J. S. Anderson, J. Am.
Chem. Soc., 2018, 140, 13176−13180.
10. R. Fränkel, U. Kernbach, M. B. Christianopoulou, U. Plaia, M.
Suter, W. Ponikwar, H. Nöth, C. Moinet and W. P. Fehlhammer.
J. Organomet. Chem., 2001, 617-618, 530-545.
11. S. Hikichi, K. Hanaue, T. Fujimura, H. Okuda and J. Nakazawa,
Dalton Trans., 2013, 42, 3346-3356.
12. A. P. Forshaw, R. P. Bontchev and J. M. Smith, Inorg. Chem.,
2007, 46, 3792-3794.
13. (a) A. P. Forshaw, J. M. Smith, A. Ozarowski, J. Krzystek, D.
Smimov, S. A. Zvyagin, T. D. Harris, H. I. Karunadasa, J. M.
Zadrozny, A. Schnegg, K. Holldack, T. A. Jackson, A. Alamiri, D.
M. Barnes and J. Telser, Inorg. Chem., 2013, 52, 144-159; (b) H.
E. Colmer, C. G. Margarit, J. M. Smith, T. A. Jackson and J.
Telser, Eur. J. Inorg. Chem., 2016, 2413-2423.
In summary, the synthesis of a heteroleptic cobalt(III)
tris(carbene)borate complex with a low degree of hindrance,
via aerobic oxidation of a cobalt(II) species, was successful. To
the best of our knowledge, 1[OTf] is the first heteroleptic
complex of the less hindered [PhB(MeIm)3]− to be
characterized by X-ray crystallography. This heteroleptic
complex was observed to be an efficient catalyst for the
oxidation of alkanes with mCPBA, even at ambient
temperatures. The homoleptic cobalt(III) bis([PhB(MeIm)3])
complex also exhibited catalytic activity at elevated
temperatures, but was inert at ambient temperatures. Both
the formation of the cobalt(III) species by the oxidation of the
cobalt(II) precursors, and the high catalytic performance of the
[PhB(MeIm)3]− ligand-containing complexes were attributed to
the higher electron-donating ability of the carbene donors
compared with the nitrogen donors of the related scorpionate
ligands, Tp* and ToM. Additionally, the catalytic data
presented, relating to the oxidation reaction in the presence of
14. F. Che, G.-F. Wang, Y.-Z. Li, X.-T. Chen and Z.-L. Xue, Inorg,
Chem. Commun., 2012, 21, 88-91.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins