10.1002/cssc.201902029
ChemSusChem
RESEARCH ARTICLE
removal. The H/C atomic ratio was approximately 1.97 which is
closed to the atomic ratio of CnH2n, indicating the major products
of cycloalkanes. It is worth noting that the compositions of liquid
alkanes were similar to those of the conventional fuel oil shown
in Table S6.[4,20] The van Krevelen plot was used to summarize
the HDO efficiency of lignin-derived oxygenates and bio-oil in
these catalysts (Fig. 6). A deep removal of oxygen content was
achieved by using the integrated dual catalysts, whereas the use
of mono Ni/CNT and WxC@CS showed incomplete
deoxygenation and hydrogenation. Therefore, the integrated
Keywords: Lignin-derived oxygenates • Hydrodeoxygenation •
Dual catalysts • Tungsten carbides • Nickel catalysts
[1]
a) G. W. Huber, S. Iborra, A. Corma, Chem. Rev. 2006, 106, 4044; b) C.
O. Tuck, E. Perez, I. T. Horvath, R. A. Sheldon, M. Poloakoff, Science
2012, 337, 695; c) C. Z. Li, X. C. Zhao, A. Q. Wang, G. W. Huber, T.
Zhang, Chem. Rev. 2015, 115, 11559.
[2]
[3]
a) M. Zaheer, R. Kempe, ACS Catal. 2015, 5 1675; b) M. V. Galkin, J.
S. M. Samec, ChemSusChem 2016, 9, 1544.
a) H. M. Wang, J. Male, Y. Wang, ACS Catal. 2013, 3, 1047; b) B. E.
Dale, R. G. Ong, Biotechnol. Prog. 2012, 28, 893; c) Q. N. Xia, Z. J.
Chen, Y. Shao, X. Q. Gong, H. F. Wang, X. H. Liu, S. F. Parker, X. Han,
S. H. Yang, Y. Q. Wang, Nat. Commun. 2016, 7, 11162; d) Z. W. Cao,
J. Engelhardt, M. Dierks, M. T. Clough, G. H. Wang, E. Heracleous, A.
Lappas, R. Rinaldi, F. Schuth, Angew. Chem. Int. Ed. 2017, 56, 2334.
S. Czernik, A. V. Bridgwater, Energy Fuels 2004, 18, 590.
dual catalysts achieved
a
remarkable interoperation of
hydrogenation and C–O bond hydrogenolysis and possessed
excellent catalytic performance for the simultaneous HDO of
lignin-derived oxygenates and actual bio-oil into liquid alkanes.
[4]
[5]
a) D. Mohan, C. U. Pittman, P. H. Steele, Energy Fuels 2006, 20, 848;
b) M. Saidi, F. Samimi, D. Karimipourfard, T. Nimmanwudipong, B. C.
Gates, M. R. Rahimpour, Energy Environ. Sci. 2014, 7, 103.
Conclusions
[6]
a) J. Zakzeski, P. C. A. Bruijinincx, A. L. Jongerius, B. M. Weckhuysen,
Chem. Rev. 2010, 110, 3552; b) C. Ju, M. R. Li, Y. M. Fang, T. W. Tan,
Green Chem. 2018, 20, 4492; c) G. H. Wang, Z. W. Cao, D. Gu, N.
Pfander, A. C. Swertz, B. Spliethoff, H. J. Bongard, C. Weidenthaler, W.
Schmidt, R. Rinaldi, F. Schuth, Angew. Chem. Int. Ed. 2016, 55, 8850;
d) L. Offner-Marko, A. Bordet, G. Moos, S. Tricard, S. Rengshausen, B.
Chaudret, K. L. Luska, W. Leitner, Angew. Chem. Int. Ed. 2018, 57,
12721.
A catalytic strategy for the efficient HDO of lignin-derived
oxygenates is successfully developed by separating the
functions of C–O bond cleavage and aromatic hydrogenation on
different active catalysts via interoperation. Tungsten carbide
can effectively perform C–O bond hydrogenolysis, and Ni is
mainly responsible for arene hydrogenation, followed by further
C–O bond cleavage. Thus, almost 100% conversion of various
oxygenates is obtained with decreasing reaction temperatures.
Product distribution can be tuned by using the integration
manners and active catalysts. High cyclohexane selectivity can
be achieved by using the integrated dual catalysts with closed
proximity (87.9%–100.0%). The control of the Ni particle size
with downstream Ni/CNT plays a crucial role in the suppression
of partial C–O bond cleavage that obtains high cyclohexanol
selectivity. As for the actual pyrolysis bio-oil feedstock, the
integrated dual catalysts show a state-of the-art catalytic
performance for the production of liquid alkanes with a total
carbon yield of 45.0% and mass yield of 27.9%.
[7]
[8]
D. A. Ruddy, J. A. Schaidle, J. R. Ferrell III, J. Wang, L. Moens, J. E.
Hensley, Green Chem. 2014, 16, 454.
a) J. Wildschut, F. H. Mahfud, R. H. Venderbosch, H. J. Heeres, Ind.
Eng. Chem. Res. 2009, 48, 10324; b) T. Nimmanwudipong, C. Aydin, J.
Lu, R. C. Runnebaum, K. C. Brodwater, N. D. Browning, D. E. Block, B.
C. Gates, Catal. Lett. 2012, 142, 1190; c) Y. C. Lin, C. L. Li, H. P. Wan,
H. T. Lee, C. F. Liu, Energy Fuels 2011, 25, 890.
[9]
a) J. He, C. Zhao and J. A. Lercher, J. Am. Chem. Soc., 2012, 134,
20768; b) H. H. Fang, J. W. Zheng, X. L. Luo, J. M. Du, A. Roldan, S.
Leoni and Y. Z. Yuan, Appl. Catal., A: Gen. 2017, 529, 20; c) A. R.
Ardiyanti, S. A. Khromova, R. H. Venderbosch, V. A. Yakovlev, H. J.
Heeres, Appl. Catal. B Environ. 2012, 117-118, 105; d) R. N. Olcese, M.
Bettahar, D. Petitjean, B. Malaman, F. Giovanella, A. Dufour, Appl.
Catal.
B Environ. 2012, 115-116, 63; e) P. M. Mortensen, J. D.
Grunwaldt, P. A. Jensen, A. D. Jensen, Catal. Today 2016, 259, 277.
[10] a) W. Schutyser, S. V. d. Bosch, J. Dijkmans, S. Turner, M. Meledina,
G. V. Tendeloo, D. P. Debecker, B. F. Sels, ChemSusChem 2015, 8,
1805; b) N. Yang, C. Zhao, P. J. Dyson, C. Wang, L. T. Liu, Y. Kou,
ChemSusChem 2008, 1, 626.
Experimental Section
Tungsten carbide (WxC@CS) was prepared via careful carburization of
hybrid organic–inorganic precursors in the presence of tungsten. The
Ni/CNT catalysts were synthesized by controlling the heating ramp during
the preparation. The integrated dual catalysts with closed proximity were
prepared by physical grinding for 15 min. Conversions of lignin-derived
oxygenates were performed using a fixed-bed reactor under different
reaction conditions.
[11] a) Y. Yang, A. Gilbert, C. Xu, Appl. Catal. A: Gen. 2009, 360, 242; b) C.
Zhao, Y. Kou, A. A. Lemonidou, X. B. Li, J. A. Lercher, Angew. Chem.
Int. Ed. 2009, 48, 3987; c) K. L. Luska, P. Migowski, S. El Sayed, W.
Leiner, Angew. Chem. Int. Ed. 2015, 54, 15750; d) H. H. Duan, J. C.
Dong, X. R. Gu, Y. K. Peng, W. X. Chen, T. Issariyakul, W. K. Myers, M.
J. Li, N. Yi, A. F. R. Kilpatrick, Y. Wang, X. S. Zheng, S. F. Ji, Q. Wang,
J. T. Feng, D. L. Chen, Y. D. Li, J. C. Buffer, H. C. Liu, S. C. E. Tsang,
D. O’Hare, Nat. Commun. 2017, 8, 591.
[12] a) C. Zhao, J. A. Lercher, Angew. Chem. Int. Ed. 2012, 51, 5935; b) C.
Zhao, J. He, A. A. Lemonidou, X. Li, J. A. Lercher, J. Catal. 2011, 280,
8; c) C. Zhao, J. A. Lercher, ChemCatChem 2012, 4, 64.
Acknowledgements
[13] a) N. B. Van, D. Laurenti, P. Delichere, C. Geantet, Appl. Catal. B:
Environ. 2011, 101, 246; b) X. Zhu, L. L. Lobban, R. G. Mallinson, D. E.
Resasco, J. Catal. 2011, 281, 21; c) D. Y. Hong, S. J. Miller, P. K.
Agrawal, C. W. Jones, Chem. Commun. 2010, 46, 1038; d) Q. N. Xia,
Q. Cuan, X. H. Liu, X. Q. Gong, G. Z. Lu, Y. Q. Wang, Angew. Chem.
Int. Ed. 2014, 53, 9755.
This work was supported by the National Key Research and
Development Program of China (2017YFA0206801), the
National Natural Science Foundation of China (21972113 and
21473145), and the Program for Innovative Research Team in
Chinese Universities (IRT_14R31).
[14] a) G. J. Wu, N. Zhang, W. L. Dai, N. J. Guan, L. D. Li, ChemSusChem
2018, 11, 2179; b) H. L. Wang, H. M. Wang, E. Kuhn, M. P. Tucker, B.
This article is protected by copyright. All rights reserved.