C O M M U N I C A T I O N S
external substrates, such as DPH, via a H-atom abstraction process
to initially produce a η1-hydroperoxoMn(III) complex (Figure 1,
2a). The reduction and protonation of the superoxo ligand mirrors
steps proposed during turnover in cytochrome P450. The tautomeric
η2-peroxomanganese(III) species (Figure 1, 2b) could be formed
from 2a by intramolecular proton transfer from the hydroperoxo
to the carboxamido component of the tripodal ligand. In this
pathway, the pivaloylamide moiety is re-formed to provide an
additional H-bond donor within the cavity. At present, we cannot
distinguish between these two structural possibilities. Nevertheless,
our findings establish that a mononuclear peroxoMn(III) can be
produced from O2 at room temperature.
Figure 2. Parallel-mode EPR spectrum (A) and simulation (B) of 2 (10
mM in DMF) recorded at 11 K. Microwave frequency and power, 9.379
GHz, 0.2 mW; modulation, 10 G. Simulation parameters: S ) 2, g ) 2.0,
D ) -2 cm-1, E/D ) 0.13(3), A ) 160 MHz.
Acknowledgment is made to the NIH (GM050781 to A.S.B.;
GM77387 to M.P.H.) for financial support.
Supporting Information Available: Experimental details for all
chemical reactions and figures for all spectra. This material is available
References
(1) Borovik, A. S.; Zart, M. K.; Zinn, P. J. In ActiVation of Small Molecules:
Organometallic and Bioinorganic PerspectiVes, Tolman, W. B., Ed.; Wiley-
VCH: Weinheim, Germany, 2006; pp 187-234, and references therein.
(2) (a) Cytochrome P450: Structure, Mechanism, and Biochemistry, 3rd ed.;
Ortiz de Montellano, P. R., Ed.; Kluwer Academic/Plenum Publishers: New
York, 2005. (b) ComprehensiVe Coordination Chemistry II; Que, L., Jr.,
Tolman, W. B., Eds.; Elsevier: Oxford, 2004; Vol. 8. (c) Decker, A.; Chow,
M. S.; Kemsley, J. N.; Lehnert, N.; Solomon, E. I. J. Am. Chem. Soc. 2006,
128, 4719–4733. (d) Groves, J. T.; Han, Y.-Z. In Cytochrome P-450.
Structure, Mechanism and Biochemistry; Ortiz de Montellano R. R., Ed.;
Plenum Press: New York, 1995; pp 3-48.
Figure 3. FTIR (A) and negative-mode ESI-MS (B) spectra of 2 after
exposure to 16O2 (black) and 18O2 (red) collected from DMA solutions at
room temperature.
(3) Bossek, U.; Weyhermu¨ller, T.; Wieghardt, K.; Nuber, B.; Weiss, J. J. Am.
Chem. Soc. 1990, 112, 6387–6388.
(4) Dioxygen adducts of manganese porphyrins have been observed at low
temperatures: (a) Weschler, C. J.; Hoffman, B. M.; Basolo, F. J. Am. Chem.
Soc. 1975, 97, 5278–5280. (b) Hoffman, B. M.; Weschler, C. J.; Basolo,
F. J. Am. Chem. Soc. 1976, 98, 5473–5482.
(5) (a) Shirazi, A.; Goff, H. M. J. Am. Chem. Soc. 1982, 104, 6318–6322. (b)
Groves, J. T.; Watanabe, Y.; McMurry, T. J. J. Am. Chem. Soc. 1983,
105, 4489–4490. (c) VanAtta, R. B.; Strouse, C. E.; Hanson, L. K.;
Valentine, J. S. J. Am. Chem. Soc. 1987, 109, 1425–1434. (d) Groni, S.;
Blain, G.; Guillot, R.; Policar, C.; Anxolabehere-Mallart, E. Inorg. Chem.
2007, 46, 1951–1953.
(6) (a) Kitajima, N.; Komatsuzaki, H.; Hikichi, S.; Osawa, M.; Moro-oka, Y.
J. Am. Chem. Soc. 1994, 116, 11596–11597. (b) Seo, M. S.; Kim, J. Y.;
Annaraj, J.; Kim, Y.; Lee, Y.-M.; Kim, S.-J.; Kim, J.; Nam, W. Angew.
Chem., Int. Ed. 2007, 46, 377–380.
(7) Borovik, A. S. Acc. Chem. Res. 2005, 38, 54–61, and references therein.
(8) Parsell, T. H.; Behan, R. K.; Hendrich, M. P.; Green, M. T.; Borovik, A. S.
J. Am. Chem. Soc. 2006, 128, 8728–8729.
under a 16O2 atmosphere (Figure 3A). The 18O-isotopomer can be
prepared from 18O2, causing a shift in the peak to 837 cm-1. The
observed vibrational change between the two isotopomers is as
expected based on a harmonic O-O oscillator (ν(16O2)/ν(18O2) )
1.06; calcd ) 1.07).14 These vibrational values are in the range
normally observed for other metal-based peroxo systems. For
instance, the η2-peroxoMnIII(Tp)15 complexes of Kitajima, formed
using H2O2, have FTIR-active peaks at 892 cm-1 that were assigned
to ν(O2).6a The electrospray ionization mass spectrum (ESI-MS)
of 2 prepared with 16O2 exhibits a strong ion with a mass-to-charge
ratio (m/z) of 576.2703 (Figure 3B), a shift of 33 mass units from
the peak associated with 1 (Figure S3). The mass and calculated
isotopic distribution corresponds to the addition of a hydroperoxo
ligand to 1 (calcd, 576.2706; Figure S4A). Furthermore, when 2
was prepared from 18O2, the molecular ion peak shifts by 4 mass
units (Figure 3B) to a m/z of 580.2794 (calcd, 580.2792; Figure
S4B).
(9) (a) Wada, A.; Harata, M.; Hasegawa, K.; Jitsukawa, K.; Masuda, H.; Mukai,
M.; Kitagawa, T.; Einaga, H. Angew. Chem., Int. Ed. 1998, 37, 798–799.
(b) Mareque Rivas, J. C.; Salvagni, E.; Parsons, S. Dalton Trans. 2004,
4185–4192. (c) Rudzka, K.; Arif, A. M.; Berreau, L. M. J. Am. Chem.
Soc. 2007, 128, 17018–17023.
(10) Full experimental details are found in Supporting Information.
(11) Yields are obtained from EPR simulations using SpinCount developed by
one of the authors (M.P.H.).
(12) The extinction coefficient for this peak is less than 300 M-1cm-1
.
(13) (a) Campbell, K. A.; Yikilmaz, E.; Grant, C. V.; Gregor, W.; Miller, A.-
F.; Britt, R. D. J. Am. Chem. Soc. 1999, 121, 4714–4715. (b) Campbell,
K. A.; Force, D. A.; Nixon, P. J.; Dole, F.; Diner, B. A.; Britt, R. D. J. Am.
Chem. Soc. 2000, 122, 3754–3761. (c) Campbell, K. A.; Lashley, M. R.;
Wyatt, J. K.; Nantz, M. H.; Britt, R. D. J. Am. Chem. Soc. 2001, 123,
5710–5719. (d) Krzystek, J.; Telser, J.; Hoffman, B. M.; Brunel, L.-C.;
Licoccia, S. J. Am. Chem. Soc. 2001, 123, 7890–7897.
Preliminary reactivity studies indicate that 2 leads to the oxidative
deformylation of aldehydes. For instance, treating 2 with cyclo-
hexanecarboxaldehyde afforded cyclohexanone as the only GC-MS
detectable product in an unoptimized yield of 40% (eq 1). Note
that deformylation reactions are known for iron(III)16 and
manganese(III)6b peroxo complexes.
(14) The difference of 48 cm-1 between the ν(O2) of the two isotopomers is
similar to those reported for FeIII-OOH and FeIII-OO complexes: Roelfes,
G.; Vrajmasu, V.; Chen, K.; Ho, R. Y. N.; Rohed, J.-U.; Zondervan, C.;
Crois, R. M.; Schudde, E. P.; Lutz, M.; Spek, A. L.; Hage, R.; Feringa,
B. L.; Mu¨nck, E.; Que, L., Jr Inorg. Chem. 2003, 42, 2639–2653.
(15) Tp, hydrotris(3,5-iPr-pyrazolyl)borate.
(16) (a) Vaz, A. D. N.; Roberts, E. S.; Coon, M. J. J. Am. Chem. Soc. 1991,
113, 5887–5889. (b) Selke, M.; Sisemore, M. F.; Valentine, J. S. J. Am.
Chem. Soc. 1996, 118, 2008–2012. (c) Wertz, D. L.; Sisemore, M. F.; Selke,
M.; Driscoll, J.; Valentine, J. S. J. Am. Chem. Soc. 1998, 120, 5331–5332.
(d) Goto, Y.; Wada, S.; Morishima, I.; Wantanabe, Y. J. Inorg. Biochem.
1998, 69, 241–247.
The spectroscopic, mass spectrometry, and reactivity results are
consistent with 2 being a monomeric peroxomanganese(III) com-
plex. A possible mechanism for its formation would involve a
superoxomanganese(III) intermediate that reacts with solvent or
JA802775E
9
J. AM. CHEM. SOC. VOL. 130, NO. 28, 2008 8889