1
316 Journal of Medicinal Chemistry, 2009, Vol. 52, No. 5
Zhang et al.
(
7) Prokai-Tatrai, K.; Prokai, L.; Bodor, N. Brain-targeted delivery of a
albumin studied by site-directed mutagenesis. J. Mol. Biol. 2006, 363,
702–712.
leucine-enkephalin analogue by retrometabolic design. J. Med. Chem.
1
996, 39, 4775–4782.
(24) Mazarati, A.; Lundstrom, L.; Sollenberg, U.; Shin, D.; Langel, U.;
Sankar, R. Regulation of kindling epileptogenesis by hippocampal
galanin type 1 and type 2 receptors: the effects of subtype-selective
agonists and the role of G-protein-mediated signaling. J. Pharmacol.
Exp. Ther. 2006, 318, 700–708.
(25) Mazarati, A. M. Galanin and galanin receptors in epilepsy. Neuropep-
tides 2004, 38, 331–343.
(
8) Elmagbari, N. O.; Egleton, R. D.; Palian, M. M.; Lowery, J. J.; Schmid,
W. R.; Davis, P.; Navratilova, E.; Dhanasekaran, M.; Keyari, C. M.;
Yamamura, H. I.; Porreca, F.; Hruby, V. J.; Polt, R.; Bilsky, E. J.
Antinociceptive structure-activity studies with enkephalin-based
opioid glycopeptides. J. Pharmacol. Exp. Ther. 2004, 311, 290–297.
(
9) Egleton, R. D.; Mitchell, S. A.; Huber, J. D.; Janders, J.; Stropova,
D.; Polt, R.; Yamamura, H. I.; Hruby, V. J.; Davis, T. P. Improved
bioavailability to the brain of glycosylated Met-enkephalin analogs.
Brain Res. 2000, 881, 37–46.
10) Banks, W. A.; Schally, A. V.; Barrera, C. M.; Fasold, M. B.; Durham,
D. A.; Csernus, V. J.; Groot, K.; Kastin, A. J. Permeability of the
murine blood-brain barrier to some octapeptide analogs of soma-
tostatin. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 6762–6766.
11) Kokko, K. P.; Hadden, M. K.; Price, K. L.; Orwig, K. S.; See, R. E.;
Dix, T. A. In vivo behavioral effects of stable, receptor-selective
neurotensin[8-13] analogues that cross the blood-brain barrier.
Neuropharmacology 2005, 48, 417–425.
(26) Liu, H. X.; Hokfelt, T. The participation of galanin in pain processing
at the spinal level. Trends Pharmacol. Sci. 2002, 23, 468–474.
(
27) Flatters, S. J.; Fox, A. J.; Dickenson, A. H. In vivo and in vitro effects
of peripheral galanin on nociceptive transmission in naive and
neuropathic states. Neuroscience 2003, 116, 1005–1012.
(
(
28) Wynick, D.; Thompson, S. W.; McMahon, S. B. The role of galanin
as a multi-functional neuropeptide in the nervous system. Curr. Opin.
Pharmacol. 2001, 1, 73–77.
(
(
29) Toth, I. A novel chemical approach to drug delivery: lipidic amino
acid conjugates. J. Drug Targeting 1994, 2, 217–239.
(
30) Blanchfield, J. T.; Lew, R. A.; Smith, A. I.; Toth, I. The stability of
lipidic analogues of GnRH in plasma and kidney preparations: the
stereoselective release of the parent peptide. Bioorg. Med. Chem. Lett.
(
12) Banks, W. A.; Wustrow, D. J.; Cody, W. L.; Davis, M. D.; Kastin,
A. J. Permeability of the blood-brain barrier to the neurotensin8-13
analog NT1. Brain Res. 1995, 695, 59–63.
2
005, 15, 1609–1612.
(
13) Witt, K. A.; Gillespie, T. J.; Huber, J. D.; Egleton, R. D.; Davis, T. P.
Peptide drug modifications to enhance bioavailability and blood-brain
barrier permeability. Peptides 2001, 22, 2329–2343.
(
31) Knudsen, L. B.; Nielsen, P. F.; Huusfeldt, P. O.; Johansen, N. L.;
Madsen, K.; Pedersen, F. Z.; Thogersen, H.; Wilken, M.; Agerso, H.
Potent derivatives of glucagon-like peptide-1 with pharmacokinetic
properties suitable for once daily administration. J. Med. Chem. 2000,
(
(
(
14) Egleton, R. D.; Davis, T. P. Development of neuropeptide drugs that
cross the blood-brain barrier. NeuroRx 2005, 2, 44–53.
4
3, 1664–1669.
15) Banks, W. A. Delivery of peptides to the brain: emphasis on therapeutic
development. Biopolymers 2008, 90, 589–594.
(
32) Havelund, S.; Plum, A.; Ribel, U.; Jonassen, I.; Volund, A.; Markussen,
J.; Kurtzhals, P. The mechanism of protraction of insulin detemir, a
long-acting, acylated analog of human insulin. Pharm. Res. 2004, 21,
16) Banks, W. A.; Kastin, A. J. Peptides and the blood-brain barrier:
lipophilicity as a predictor of permeability. Brain Res. Bull. 1985, 15,
1
498–1504.
2
87–292.
(
33) Oh, H. S.; Kim, S.; Cho, H.; Lee, K. H. Development of novel lipid-
peptide hybrid compounds with antibacterial activity from natural
cationic antibacterial peptides. Bioorg. Med. Chem. Lett. 2004, 14,
(
17) Wang, J.; Hogenkamp, D. J.; Tran, M.; Li, W. Y.; Yoshimura, R. F.;
Johnstone, T. B.; Shen, W. C.; Gee, K. W. Reversible lipidization for
the oral delivery of leu-enkephalin. J. Drug Targeting 2006, 14, 127–
1
109–1113.
1
36.
(
18) Toth, I.; Malkinson, J. P.; Flinn, N. S.; Drouillat, B.; Horvath, A.;
Erchegyi, J.; Idei, M.; Venetianer, A.; Artursson, P.; Lazorova, L.;
Szende, B.; Keri, G. Novel lipoamino acid- and liposaccharide-based
system for peptide delivery: application for oral administration of
tumor-selective somatostatin analogues. J. Med. Chem. 1999, 42, 4010–
(34) Rivett, D. E.; Hewish, D.; Kirkpatrick, A.; Werkmeister, J. Inhibition
of membrane-active peptides by fatty acid-peptide hybrids. J. Protein
Chem. 1999, 18, 291–295.
(35) Chicharro, C.; Granata, C.; Lozano, R.; Andreu, D.; Rivas, L.
N-Terminal fatty acid substitution increases the leishmanicidal activity
of CA(1-7)M(2-9), a cecropin-melittin hybrid peptide. Antimicrob.
Agents Chemother. 2001, 45, 2441–2449.
(36) Pignatello, R.; Puglisi, G. Lipophilicity evaluation by RP-HPLC of
two homologous series of methotrexate derivatives. Pharm. Acta HelV.
2000, 74, 405–410.
(37) Horvath, A.; Olive, C.; Wong, A.; Clair, T.; Yarwood, P.; Good, M.;
Toth, I. Lipoamino acid-based adjuvant carrier system: enhanced
immunogenicity of group a streptococcal peptide epitopes. J. Med.
Chem. 2002, 45, 1387–1390.
4
013.
(
19) Hitchcock, S. A.; Pennington, L. D. Structure-brain exposure relation-
ships. J. Med. Chem. 2006, 49, 7559–7583.
(
20) Yuan, L.; Wang, J.; Shen, W. C. Reversible lipidization prolongs the
pharmacological effect, plasma duration, and liver retention of
octreotide. Pharm. Res. 2005, 22, 220–227.
(
(
(
21) Weber, S. J.; Abbruscato, T. J.; Brownson, E. A.; Lipkowski, A. W.;
Polt, R.; Misicka, A.; Haaseth, R. C.; Bartosz, H.; Hruby, V. J.; Davis,
T. P. Assessment of an in vitro blood-brain barrier model using
several [Met5]enkephalin opioid analogs. J. Pharmacol. Exp. Ther.
(38) Tamai, I.; Sai, Y.; Kobayashi, H.; Kamata, M.; Wakamiya, T.; Tsuji,
A. Structure-internalization relationship for adsorptive-mediated
endocytosis of basic peptides at the blood-brain barrier. J. Pharmacol.
Exp. Ther. 1997, 280, 410–415.
1
993, 266, 1649–1655.
22) Bulaj, G.; Green, B. R.; Lee, H. K.; Robertson, C. R.; White, K.;
Zhang, L.; Sochanska, M.; Flynn, S. P.; Scholl, E. A.; Pruess, T. H.;
Smith, M. D.; White, H. S. Design, synthesis, and characterization of
high-affinity, systemically-active galanin analogues with potent anti-
convulsant activities. J. Med. Chem. 2008, 51, 8038–8047.
(
39) Drin, G.; Cottin, S.; Blanc, E.; Rees, A. R.; Temsamani, J. Studies on
the internalization mechanism of cationic cell-penetrating peptides.
J. Biol. Chem. 2003, 278, 31192–31201.
23) Kragh-Hansen, U.; Watanabe, H.; Nakajou, K.; Iwao, Y.; Otagiri, M.
Chain length-dependent binding of fatty acid anions to human serum
JM801397W