4
3
3
3
4
4
4
4
4
4
7
8
9
0
1
2
3
4
5
conditions, the present catalytic system demonstrated
excellent catalytic activity with very low palladium loading
of 0.01 mol% at room temperature in air. Moreover, the
TEM analysis and poison tests revealed the heterogenous
nature of the palladium species. The catalytic system was
recycled up to ten times with small decrease in its activity.
This study highlighted that the bulk weak ligands played
significant role on the stabilization of the palladium NPs
generated in-situ, and rapid initiated the transformation.
1
46
This work was supported by the Programs of GDPU
4
7 (No. 2017KQNCX110, 2014KQNCX144) and Program of
2
3
Figure 2. TEM micrograph and size distribution of in-situ generated
Pd NPs during Suzuki-Miyaura cross-coupling.
48 TCMBGP (No. 20191196)
4
5
9
0
Supporting
http://dx.doi.org/10.1246/cl.******.
Information
is
available
on
4
5
6
7
8
9
0
1
2
3
4
5
In this circumstance, we considered that Pd(0) NPs are
formed from PdCl in the presence of L3, wherein L3 acts as
2
both ligand and stabilizer. In order to further clarify the real
catalytic species in Suzuki cross-coupling reaction,
transmission electron microscope (TEM) was used for the
analysis of the distribution and size of Pd NPs. As illustrated
in Figure 2, the TEM analysis indicated that nano-Pd
particles were generated as dark spherical dots and
dispersed well with an average particle sized around of 3–7
nm. These results demonstrated that the in-situ formed Pd
NPs are supposed to be the key catalytic species in this
catalytic system.
51 References and Notes
5
2
3
1
G. Bringmann, T. Gulder, T. A. M. Gulder, M. Breuning, Chem.
Rev. 2011, 32, 563.
5
54
2
a) D. Roy, Y. Uozumi, Adv. Synth. Catal. 2017, 360, 602. b) J. S.
Ouyang, Y. F. Li, F. D. Huang, D. D. Lu, F. S. Liu,
ChemCatChem 2018, 10, 371. c) T. Hoshi, Y. Shishido, A.
Suzuki, Y. Sasaki, H. Hagiwara, T. Suzuki, Chem. Lett. 2018, 47,
780.
a) J. D. Scholten, B. C. Leal, J. Dupont, ACS Catal. 2012, 2, 184.
b) B. Karimi, F. Mansouri, H. M. Mirzaei, ChemCatChem 2015,
7, 1736. c) N. Oger, F. X. Filpin, ChemCatChem 2016, 8, 1998.
a) E. Ramirez, S. Jansat, K. Philippot, P. Lecante, M. Gomez, A.
M. Masdeu-Bulto´, B. Chaudret, J. Org. Chem. 2004, 689, 4601.
b) R. Bhaskar, H. Joshi, A. K. Sharma, A. K. Singh, ACS Appl.
Mater. Interfaces 2017, 9, 2223.
a) P. Singh, A. K. Singh, Dalton Trans. 2017, 46, 10037. b) R.
Bhaskar, A. K. Sharma, M. K. Yadav, A. K. Singh, Dalton Trans.
2017, 46, 15235.
M. P. Singh, F. Saleem, R. S. Pal, A. K. Singh, New J. Chem.
2017, 41, 11342.
5
5
5
5
5
5
6
7
8
9
1
1
1
1
1
1
3
4
60
6
6
6
6
6
6
6
6
6
7
7
7
7
7
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
V. Sable, K. Maindan, A. R. Kapdi, P. S. Shejwalkar, K. Hara,
ACS Omega 2017, 2, 204.
V. Calo`, A. Nacci, A. Monopoli, F. Montingelli, J. Org. Chem.
2005, 70, 6040.
1
1
6
7
Figure 3. Recycling of L3/Pd in Suzuki-Miyaura cross-coupling tested
under optimum conditions.
75
J. Xu, X. Zhai, X. Wu, Y. J. Zhang, Tetrahedron 2015, 71, 1712.
76 10 E. C. Keske, O. V. Zenkina, R. Wang, C. M. Crudden,
7
7
7
8
7
8
9
0
Organometallics 2012, 31, 6215.
M. Charbonneau, G. Addoumieh, P. Oguadinma, A. R.
Schmitzer, Organometallics 2014, 33, 6544.
a) J. B. Ernst, C. Schwermann, G. Yokota, M. Tada, S.
Muratsugu, N. L. Doltsinis, F. Glorius, J. Am. Chem. Soc. 2017,
139, 9144. b) J. M. Asensio, S. Tricard, Y. Coppel, R. Andrés, B.
Chaudret, E. Jesús, Chem. Eur. J. 2017, 23, 13435. c) A. V.
Astakhov, O. V. Khazipov, A. Y. Chernenko, D. V. Pasyukov, A.
S. Kashin, E. G. Gordeev, V. N. Khrustalev, V. M. Chernyshev,
V. P. Ananikov, Organometallics 2017, 36, 1981.
11
12
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
Encouraged by the highly efficient catalytic system
depicted in Table 2 & 3, we further explore its ability to
perform as a recyclable catalyst for potential industrial
applications. For this purpose, the recyclability potential of
L3 stabilized Pd NPs after Suzuki coupling cycle was
checked under optimized conditions. A fresh lot of 4-
81
8
8
8
8
2
3
4
5
bromochlorobenzene, phenylboronic acid and K CO were
2
3
86
added to the reaction vessel after completion of a coupling
reaction cycle. The respective yields after each run are
depicted in Figure 3. Yields of this study by GC indicated
that the catalytic system recycled for 10 consecutive runs
with only 24% decrease in activity. The TEM image of
reused catalyst after the fifth run (ESI, Figure S2) indicates
well dispersibility of Pd NPs without detectable size
increase. These results imply the distinct advantage of this
catalytic system in its good stability and reusability.
87 13 Z. Du, W. Zhou, F. Wang, J. X. Wang, Tetrahedron 2011, 67,
8
8
9
9
9
8
9
0
1
2
4914.
14
a) A. Rühling, K. Schaepe, L. Rakers, B. Vonhören, P. Tegeder,
B. J. Ravoo, F. Glorius, Angew. Chem. Int. Ed. 2016, 55, 5856. b)
A. Ferry, K. Schaepe, P. Tegeder, C. Richter, K. M. Chepiga, B.
J. Ravoo, F. Glorius, ACS Catal. 2015, 5, 5414.
93 15 a) D. D. Lu, X. X. He, F. S. Liu, J. Org. Chem. 2017, 82, 10898.
9
9
9
9
9
4
5
6
7
8
b) M. Beygzadeh, A. Alizadeh, M. M. Khodaei, D. Kordestani,
Catal. Commun. 2013, 32, 86. c) G. Sarmah,; U. Bora,
Tetrahedron Lett. 2015, 56, 2906.
a) S. Tarnowicz, W. Alsalahi, E. Mieczyńska, A. M. Trzeciak,
Tetrahedron 2017, 73, 5605. b) P. Wójcik, L. Sygellou, A.
Gniewek, A. Skarżyńska, A. M. Trzeciak, ChemCatChem 2017,
9, 4397.
16
In summary, a simple and efficient Suzuki-Miyaura
cross-coupling reaction promoted by salicylaldehyde/PdCl2
99
has been developed. Under the optimized reaction 100