3
1
Table 4. Substrate scopea
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
2
3
4
5
6
7
8
9
Ph
+
I
O
O
O
DCE
CF3
CF3
R2
R2
(1 equiv)
H
80 °C, 4 h
2
Ph
1b
O
O
Ph
Ph
Ph
2a, 62%
2b, 35%
10
11
12
13
14
15
O
O
Ph
Ph
2d, 43%
2i, 35%
16 aReaction conditions unless otherwise noted: aldehyde (0.2 mmol),
17 reagent 1b (0.24 mmol) in solvent (2.5 M) under indicated condition.
73
18
19
20
74 Scheme 3. Control experiments with (a) TEMPO and (b) o-
75
76
77
phthalaldehyde.
Furthermore, the synthetic utility of this approach was
21 demonstrated by the reaction of hypervalent alkynyliodine
22 reagent 1b with estrone-derived substrate 4, affording the
23 desired product 2o in 48% yield (Scheme 2). This result
24 indicates that our method is potentially applicable to the
25 late-stage functionalization in the total synthesis of bioactive
26 molecules.
27
28
29
30
31
32
33
34
35
36
37
In conclusion, we have developed two different ways
78 of preparing various a,b-alkynyl ketones from aldehydes
79 with hypervalent alkynyliodine reagents in the absence of
80 any catalysts under mild, metal-free conditions. These
81 methods can be properly used depending on the
82 valuableness of aldehyde substrates and alkynyliodine
83 reagents. The generality of these approaches was well
84 demonstrated with various types of aldehydes, including
85 aliphatic (prim-, sec-, and tert-alkyl) aldehydes and aromatic
86 aldehydes. Further investigations into the applications of
87 such a practical, metal-free oxidative alkynylation strategy
88 for various aldehydes for the physiologically active
89 compounds are currently in progress in our laboratory.
90
O
H
Ph
I
O
+
CF3
CF3
H
H
O
H
O
4
1b (2 equiv)
Ph
H
H
91
DCE (2.0 M)
80 °C, 12 h
O
92 This work was supported by JSPS KAKENHI Grant
93 Number JP26220803 and JP17H06450 (Hybrid Catalysis).
94
H
2o, 48%
38 Scheme 2. Synthetic application using estrone derivative 4.
95 Supporting
Information
is
available
on
96 http://dx.doi.org/10.1246/cl.******.
97 References and Notes
39
In order to elucidate the reaction mechanism, we
40 carried out several control experiments. When the reaction
41 of 3-methylbutanal (5 equiv) with 1 equiv of 1b was
42 executed in DCE at 80 °C for 9 h in the presence of a radical
43 scavenger, 2,2,6,6-tetramethylpiperidin-1-yl)oxy (TEMPO),
44 the alkynylation was totally inhibited, and 1b was recovered
45 in >90% yield (Scheme 3a). This result implies some radical
46 intermediates are most likely participated in this
47 alkynylation. In addition, a solution of o-phthalaldehyde (5
48 equiv) in DCE was treated with 1 equiv of 1b at 80 °C to
49 furnish cyclization product 2p, implying the intervention of
50 acyl radical intermediate 5 (Scheme 3b). We assume that the
51 coordination of aldehyde carbonyl to electrophilic
52 iodine(III) reagent 1b might accelerate the acyl radical
53 formation with trace amounts of oxygen gas in a reaction
54 system.
98
99
1
a) C. H. Fawcett, R. D. Firn, D. M. Spencer, Physiol. Plant
Pathol. 1971, 1, 163. b) B. G. Vong, S. H. Kim, S. Abraham, E.
A. Theodorakis, Angew. Chem., Int. Ed. 2004, 43, 3947. c) A. S.
Karpov, E. Merkul, F. Rominger, T. J. J. Müller, Angew. Chem.,
Int. Ed. 2005, 44, 6951. d) C. J. Forsyth, J. Xu, S. T. Nguyen, I.
A. Samdal, L. R. Briggs, T. Rundberget, M. Sandvik, C. O.
Miles, J. Am. Chem. Soc. 2006, 128, 15114. e) L. F. Tietze, R. R.
Singidi, K. M. Gericke, H. Böckemeier, H. Laatsch, Eur. J. Org.
Chem. 2007, 5875. f) V. S. Aulakh, M. A. Ciufolini, J. Am.
Chem. Soc. 2011, 133, 5900. g) W. P. Unsworth, J. D.
Cuthbertson, R. J. K. Taylor, Org. Lett. 2013, 15, 3306.
a) A. S. Karpov, T. J. J. Müller, Org. Lett. 2003, 5, 3451. b) Y. L.
Ka, J. L. Mi, N. K. Jae, Tetrahedron 2005, 61, 8705. c) M. C.
Bagley, C. Glover, E. A. Merritt, Synlett 2007, 2459. d) D. M.
D’Souza, T. J. J. Müller, Nat. Protoc. 2008, 3, 1660. e) P.
Bannwarth, A. Valleix, D. Grée, R. Grée, J. Org. Chem. 2009, 74,
4646. f) M. Zora, A. Kivrak, J. Org. Chem. 2011, 76, 9379. g) S.
Peng, Z. Wang, L. Zhang, X. Zhang, Y. Huang, Nat. Commun.
2018, 9, 375.
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
2
55