1320
A. Rostami, A. Tavakoli / Chinese Chemical Letters 22 (2011) 1317–1320
After completion of the reaction which confirmed by TLC (eluent: n-hexane/ethyl acetate: 2/1), the crude product was
filtered off and recrystallized from ethanol to give pure product in good to high yields.
General procedure for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones in methanol. In a round bottomed flask,
sulfamic acid (0.1 mmol, 0.010 g) was added to a mixture of anthranilamide (1 mmol, 0.136 g) and aldehyde or ketone
(1 mmol) in methanol (2 mL), and then the mixture was stirred at room temperature for the appropriate time (Table 2).
After completion of the reaction which confirmed by TLC (eluent: n-hexane/ethyl acetate: 2/1), the crude product was
filtered off and recrystallized from ethanol to give products in good to high yields.
All of the obtained 2,3-dihydroquinazolin-4(1H)-ones are known compounds (expect product 3l) and their physical
data, IR and 1H NMR spectra were essentially identical with those of authentic samples. Compound 3l, which is new,
1
was characterized by IR, H NMR, 13C NMR, and MS spectroscopy and elemental analysis.
2-(2-Naphtyl)-2,3-dihydroquinazolin-4(1H)-one (Table 2, entry 13): white solid; mp: 225–227 8C; IR (film) nmax
(cmÀ1): 3282m, 3188w, 3065w, 2926w, 1649vs, 1611m, 1512m, 1486w, 1441w, 1390m, 1315m, 1158w, 825m, 747m.
1H NMR (DMSO-d6, 250 MHz): d 5.90 (s, 1H, CH), 6.6–8.2 (m, 12H, NH + Ar–H), 8.4 (s, 1H, NH). 13C NMR
(DMSO-d6, 62.9 MHz): d 67.41, 114.85, 115.38, 117.58, 125.28, 126.35, 126.70, 126.78, 127.82, 127.97, 128.37,
128.51, 132.91, 133.45, 133.70, 139.22, 148.33, 164.16; MS (EI, 70 eV, m/z): 275.1(M+H)+, 274.1(M+), 273.1
(MÀ1)+, 147, 120, 92; Anal. Calcd. for C18H14N2O: C 78.81, H 5.14, N 10.21; found, C 78.82, H 5.12, N 10. 25.
References
[1] M. Hour, L. Huang, S. Kuo, et al. J. Med. Chem. 43 (2000) 4479.
[2] R.J. Abdel-Jalil, W. Volter, M. Saeed, Tetrahedron Lett. 45 (2004) 3475.
[3] J.F. Liu, J. Lee, A.M. Dalton, et al. Tetrahedron Lett. 46 (2005) 1241.
[4] J.A. Moore, G.J. Sutherland, R. Sowerby, et al. J. Org. Chem. 34 (1969) 887.
[5] W.K. Su, B. Yang, Aust. J. Chem. 55 (2002) 695.
[6] D.Q. Shi, L.C. Rong, J.X. Wang, et al. Tetrahedron Lett. 44 (2003) 3199.
[7] Y.S. Sadanandam, K.R.M. Reddy, A.B. Rao, Eur. J. Org. Chem. 22 (1987) 169.
[8] H.R. Shaterian, A.R. Oveisi, Chin. J. Chem. 27 (2009) 2418.
[9] C.L. Yoo, J.C. Fettinger, M.J. Kurth, J. Org. Chem. 70 (2005) 6941.
[10] M. Baghbanzadeh, P. Salehi, M. Dabiri, et al. Synthesis (2006) 344.
[11] P. Salehi, M. Dabiri, M.A. Zolfigol, et al. Synlett (2005) 1155.
[12] M. Dabiri, P. Salehi, S. Otokesh, et al. Tetrahedron Lett. 46 (2005) 6123.
[13] P. Salehi, M. Dabiri, M. Baghbanzadeh, et al. Synth. Commun. 36 (2006) 2287.
[14] Y.X. Zong, Y. Zhao, W.C. Luo, et al. Chin. Chem. Lett. 21 (2010) 778.
[15] J.X. Chen, D. Wu, F. He, et al. Tetrahedron Lett. 49 (2008) 3814.
[16] J.X. Chen, H.Y. Wu, W.K. Su, Chin. Chem. Lett. 18 (2007) 536.
[17] J.X. Chen, W.K. Su, H.Y. Wu, et al. Green Chem. 9 (2007) 972.
[18] A. Shaabani, A. Maleki, H. Mofakham, Synth. Commun. 38 (2008) 3751.
[19] A. Davoodnia, S. Allameh, A.R. Fakhari, et al. Chin. Chem. Lett. 21 (2010) 550.
[20] R.Z. Qiao, B.L. Xu, Y.H. Wang, Chin. Chem. Lett. 18 (2007) 656.
[21] C.J. Li, Chem. Rev. 105 (2005) 3095.
[22] L.R. Pratt, A. Pohrille, Chem. Rev. 102 (2002) 2671.
[23] R.S. Varma, Green Chem. 1 (1999) 43.
[24] M.M. Heravi, B. Baghernejad, H.A. Oskooie, Curr. Org. Chem. 13 (2009) 1002 (References therein).
[25] M.M. Heravi, H. Alinejhad, K. Bakhtiari, et al. Mol. Divers. 14 (2010) 621.
[26] J.P. Li, J.K. Qiu, H.J. Li, et al. Chin. J. Chem. 29 (2011) 511.
[27] A. Rostami, J. Akradi, Tetrahedron Lett. 51 (2010) 3501.
[28] A. Rostami, F. Ahmad-Jangi, M.R. Zarehbin, et al. Synth. Commun. 40 (2010) 1500.