376
I. Avan
Paper
Synthesis
6,6′-[(E)-Diazene-1,2-diyl]bis[N-(2-{[(S)-1-(isopropylamino)-4-
methyl-1-oxopentan-2-yl]amino}-2-oxoethyl)picolinamide] [2,2′-
AzPy-6,6′-di(Gly-Leu-NHPr-i), 9c]
(2S,2′S)-2,2′-[{(2S,2′S)-2,2′-[{2,2′-[{6,6′-[(E)-Diazene-1,2-di-
yl]bis(picolinoyl)}bis(azanediyl)]bis(acetyl)}bis(azanediyl)]bis(4-
methylpentanoyl)}bis(azanediyl)]bis(3-phenylpropanoic Acid)
[2,2′-AzPy-6,6′-di(Gly-Leu-Phe), 13]
Yield: 53 mg (76%); pale orange microcrystals; mp 244–246 °C.
Yield: 81 mg (89%); pale orange microcrystals; mp 212–214 °C.
1H NMR (400 MHz, TFA-d1): δ = 9.05–8.95 (m, 4 H), 8.92–8.84 (m, 2
H), 5.08–5.00 (m, 2 H), 4.94–4.80 (m, 4 H), 4.52–4.42 (m, 2 H), 2.12–
1.94 (m, 6 H), 1.56 (d, J = 2.6 Hz, 6 H), 1.54 (d, J = 2.6 Hz, 6 H), 1.28 (d,
J = 6.0 Hz, 6 H), 1.24 (d, J = 5.8 Hz, 6 H).
13C NMR (100 MHz, TFA-d1): δ = 176.3, 174.0, 165.9, 159.9, 148.4,
147.6, 130.2, 123.6, 55.7, 46.9, 45.4, 42.4, 26.9, 23.2, 22.4 (2 C).
1H NMR (500 MHz, DMSO-d6): δ = 12.64 (br s, 2 H), 8.96 (t, J = 5.5 Hz,
2 H), 8.36–8.26 (m, 4 H), 8.24 (d, J = 7.7 Hz, 2 H), 8.13 (d, J = 8.3 Hz, 2
H), 8.02 (d, J = 7.4 Hz, 2 H), 7.28–7.18 (m, 8 H), 7.18–7.14 (m, 2 H),
4.44–4.36 (m, 4 H), 4.06–3.96 (m, 4 H), 3.04 (dd, J = 13.9, 5.2 Hz, 2 H),
2.92 (dd, J = 13.7, 8.9 Hz, 2 H), 1.64–1.54 (m, 2 H), 1.46–1.36 (m, 4 H),
0.86 (d, J = 6.4 Hz, 6 H), 0.86 (d, J = 6.4 Hz, 6 H).
13C NMR (125 MHz, DMSO-d6): δ = 172.6, 171.7, 167.9, 163.1, 161.1,
149.7, 140.1, 137.4, 129.0 (2 C), 128.0 (2 C), 126.2, 124.6, 115.9, 53.3,
50.6, 42.2, 40.9, 36.4, 23.9, 23.0, 21.6.
HRMS [ESI(+)-TOF]: m/z [M + H]+ calcd for C34H50N10O6: 695.3988;
found: 695.4009.
2,2′-AzPy-6,6′-Di(di- and tripeptides) 12a, 12b, and 13; General
Procedure
HRMS [ESI(+)-TOF]: m/z [M + H]+ calcd for C46H54N10O10: 907.4097;
found: 907.4124.
Et3N (0.10 g, 1.00 mmol) was added to a suspension of the appropri-
ate free peptide hydrogen chloride salt 10a,b, 11a (0.50 mmol) in H2O
(0.5 mL) in a 10 mL heavy-walled Pyrex tube containing a long stir
bar. MeCN (1.5 mL) and DMF (0.2 mL) was added to the peptide solu-
tion and stirred for 2 min at r.t. 2,2′-AzPy-6,6′-diacylbenzotriazole 3c
(0.05 g, 0.10 mmol) was added to this solution. The mixture was ex-
posed to microwave irradiation (20 W, 70 °C) for 10 min with vigor-
ous stirring and simultaneous air cooling. After completion of the re-
action, the mixture was cooled to r.t. and poured onto crushed ice-
water mixture (~10 g). The mixture was acidified with aq 2 N HCl to
pH 3–4. The precipitate formed was filtered and washed with aq 1 N
HCl (3 × 5 mL), H2O, and Et2O, respectively (if a precipitate did not
form upon acidification, the solution was saturated by adding solid
NaCl and cooled for 2–3 h). The solid product was dried under vacu-
um to yield 2,2′-AzPy-6,6′-diacylpeptides (Table 5).
2,2′-AzPy-Di(tripeptides) 14a, 14b, 15a, and 15b
2,2′-AzPy-diacyltripeptide-esters 14a and 15a were prepared by fol-
lowing the same general procedure as described for 2,2′-AzPy-dia-
cyldipeptide-amides 9a–c (Table 5).
Dimethyl 2,2′-[{(2S,2′S)-2,2′-[{2,2′-[{2,2′-[(E)-Diazene-1,2-di-
yl]bis(isonicotinoyl)}bis(azanediyl)]bis(acetyl)}bis(azanedi-
yl)]bis(4-methylpentanoyl)}bis(azanediyl)](2S,2′S)-bis(3-
phenylpropanoate) [2,2′-AzPy-4,4′-di(Gly-Leu-Phe-OMe), 14a]
Yield: 61 mg (65%); brown microcrystals; mp 176–180 °C.
1H NMR (400 MHz, DMSO-d6): δ = 9.38–9.28 (m, 2 H), 8.96 (d, J = 4.4
Hz, 2 H), 8.41 (d, J = 7.0 Hz, 2 H), 8.25 (s, 2 H), 8.13 (d, J = 7.9 Hz, 2 H),
8.06 (d, J = 4.1 Hz, 2 H), 7.36–7.10 (m, 10 H), 4.56–4.34 (m, 4 H), 4.04–
3.90 (m, 4 H), 3.55 (s, 6 H), 3.10–2.90 (m, 4 H), 1.70–1.50 (m, 2 H),
1.50–1.34 (m, 4 H), 0.88 (d, J = 6.2 Hz, 6 H), 0.85 (d, J = 6.2 Hz, 6 H).
13C NMR (100 MHz, DMSO-d6): δ = 171.9, 171.6, 167.9, 164.0, 162.9,
150.4, 143.8, 137.0, 129.0 (2 C), 128.1 (2 C), 126.4, 124.0, 111.0, 53.4,
51.6, 50.4, 42.3, 40.8, 36.3, 23.9, 22.9, 21.6.
(2S,2′S)-2,2′-[{2,2′-[{6,6′-[(E)-Diazene-1,2-diyl]bis(picoli-
noyl)}bis(azanediyl)]bis(acetyl)}bis(azanediyl)]bis(4-methylpen-
tanoic Acid) [2,2′-AzPy-6,6′-di(Gly-Leu), 12a]
Yield: 44 mg (72%); pale orange microcrystals; mp 113–115 °C.
1H NMR (500 MHz, DMSO-d6): δ = 12.61 (br s, 2 H), 8.94 (t, J = 5.6 Hz,
2 H), 8.36–8.26 (m, 6 H), 8.02 (d, J = 7.4 Hz, 2 H), 4.32–4.26 (m, 2 H),
4.04 (m, 4 H), 1.74–1.60 (m, 2 H), 1.60–1.48 (m, 2 H), 0.90 (d, J = 6.5
Hz, 6 H), 0.86 (d, J = 6.5 Hz, 6 H).
HRMS [ESI(+)-TOF]: m/z [M + H]+ calcd for C48H58N10O10: 935.4410;
found: 935.4445.
(2S,2′S)-2,2′-[{(2S,2′S)-2,2′-[{2,2′-[{2,2′-[(E)-Diazene-1,2-di-
yl]bis(isonicotinoyl)}bis(azanediyl)]bis(acetyl)}bis(azanedi-
yl)]bis(4-methylpentanoyl)}bis(azanediyl)]bis(3-phenylpropanoic
Acid) [2,2′-AzPy-4,4′-di(Gly-Leu-Phe), 14b)]
13C NMR (125 MHz, DMSO-d6): δ = 173.8, 168.3, 163.1, 161.1, 149.7,
141.0, 124,6 116,0 50.2, 41.9, 40.1, 24.2, 22.7, 21.3.
HRMS [ESI(+)-TOF]: m/z [M + H]+ calcd for C28H36N8O8: 613.2729;
found: 613.2728.
LiOH (8 mg, 0.33 mmol) was added to a suspension of 14a (30 mg,
0.032 mmol) in DMF–MeOH–H2O ((3:1:1), 2 mL) in a test tube at
10 °C. After stirring the reaction mixture for 2 h at 10 °C, ice-cold wa-
ter (5 mL) was added to this mixture and acidified with aq 1 N HCl
until pH 3–4. The precipitate formed was collected by suction filtra-
tion and washed with cold H2O and Et2O. The solid product was dried
under vacuum to give 14b as pale brown microcrystals; yield: 20 mg
(69%); mp 138–142 °C.
1H NMR (400 MHz, DMSO-d6): δ = 12.68 (br s, 2 H), 9.38–9.28 (m, 2
H), 8.96 (d, J = 4.9 Hz, 2 H), 8.32–8.20 (m, 4 H), 8.13 (d, J = 8.4 Hz, 2 H),
8.06 (d, J = 4.2 Hz, 2 H), 7.32–7.14 (m, 10 H), 4.46–4.34 (m, 4 H), 4.04–
3.88 (m, 4 H), 3.05 (dd, J = 13.8, 5.2 Hz, 2 H), 2.92 (dd, J = 13.8, 9.0 Hz,
2 H), 1.66–1.54 (m, 2 H), 1.50–1.36 (m, 4 H), 0.86 (d, J = 6.4 Hz, 6 H),
0.84 (d, J = 6.4 Hz, 6 H).
(2S,2′S)-2,2′-[{(2S,2′S)-2,2′-[{6,6′-[(E)-Diazene-1,2-diyl]bis(picoli-
noyl)}bis(azanediyl)]bis(propanoyl)}bis(azanediyl)]bis(3-phenyl-
propanoic Acid) [2,2′-AzPy-6,6′-di(Ala-Phe), 12b]
Yield: 59 mg (83%); pale orange microcrystals; mp 134–138 °C.
1H NMR (500 MHz, DMSO-d6): δ = 12.79 (br s, 2 H), 8.70 (d, J = 7.9 Hz,
2 H), 8.48 (d, J = 8.0 Hz, 2 H) 8.36–8.26 (m, 4 H), 8.04 (dd, J = 7.3, 0.9
Hz, 2 H), 7.28–7.18 (m, 8 H), 7.18–7.12 (m, 2 H), 4.64–4.56 (m, 2 H),
4.52–4.42 (m, 2 H), 3.09 (dd, J = 13.8, 5.0 Hz, 2 H), 2.82 (dd, J = 13.8,
9.3 Hz, 2 H), 1.32 (d, J = 6.9 Hz, 6 H).
13C NMR (125 MHz, DMSO-d6): δ = 172.5, 171.5, 162.0, 161.0, 149.4,
141.0, 137.3, 129.0 (2C), 128.3 (2C), 126.3, 124.6, 115.8, 53.4, 48.1,
36.5, 18.7.
13C NMR (100 MHz, DMSO-d6): δ = 172.6, 171.8, 167.9, 164.0, 162.9,
150.4, 143.9, 137.4, 129.0 (2C), 128.0 (2C), 126.3, 124.1, 111.0, 53.3,
50.6, 42.3, 40.9, 36.4, 23.9, 23.0, 21.6.
HRMS [ESI(+)-TOF]: m/z [M + H]+ calcd for C36H36N8O8: 709.2729;
found: 709.2739.
© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, 365–378