Organic Letters
Letter
exemplifying the utility of zinc as a Lewis acid catalyst for the
rearrangement. Conjugated ketone 21b was also selectively
reduced and converted to the gem-dimethyl containing triflate,
which failed to react under the cross-coupling conditions. The
added steric hindrance from the reduction of the bicycle
prevented engagement with the palladium catalyst and suggests
that the struggles in converting 22 to 23 were primarily due to
decomposition of the triflate starting material. While removal of
the C12−C13 olefin suppressed this decomposition, it could
not overcome the inherent steric limitations of the gem-
dimethyl substituted substrates.
AUTHOR INFORMATION
■
*
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
Financial support was provided by The University of Arizona
and the National Science Foundation (CHE-1266365).
■
Having thoroughly explored the skeletal rearrangement, we
set out to perform postrearrangement modification of the
gibberellin core. Selective reduction of 2 with Wilkinson’s
catalyst afforded 27, demonstrating that the C12−C13 olefin
can be removed pre- or postrearrangement. Removal of the
dimethoxy-ketal moiety of 27 with samarium diiodide
unexpectedly enabled a retro-rearrangement, affording a
mixture of [2.2.2] and [3.2.1] deketalized products in a 1:1
ratio, suggesting that the nitrile-activated cyclopentadiene must
first be removed to achieve clean deketalization. Studies are
ongoing to further functionalize the gibberellin core and reduce
the cyclopentadiene prior to ketal cleavage and olefination.
Looking toward the future, we envision that adduct 2, which
is available in 9 steps and 38% overall yield from commercially
available materials, represents an ideal oxidase phase starting
REFERENCES
■
(1) Hartsuck, J. A.; Lipscomb, W. N. J. Am. Chem. Soc. 1963, 85,
3414.
2) (a) Mander, L. N. Chem. Rev. 1992, 92, 573. (b) Mander, L. N.
Nat. Prod. Rep. 2003, 20, 49.
3) MacMillan, J. Nat. Prod. Rep. 1997, 14, 221.
4) (a) Corey, E. J.; Danheiser, R. L.; Chandrasekaran, S.; Keck, G.
E.; Gopalan, B.; Larsen, S. D.; Siret, P.; Gras, J. L. J. Am. Chem. Soc.
1978, 100, 8034. (b) Corey, E. J.; Danheiser, R. L.; Chandrasekaran,
S.; Siret, P.; Keck, G. E.; Gras, J. L. J. Am. Chem. Soc. 1978, 100, 8031.
5) (a) Corey, E. J.; Munroe, J. E. J. Am. Chem. Soc. 1982, 104, 6129.
b) Corey, E. J.; Guzman-Perez, A.; Loh, T. P. J. Am. Chem. Soc. 1994,
16, 3611.
6) (a) Lombardo, L.; Mander, L. N.; Turner, J. V. J. Am. Chem. Soc.
980, 102, 6626. (b) Hook, J. M.; Mander, L. N.; Urech, R. J. Am.
(
(
(
(
(
1
(
1
1
3
point for implementation of a two-phase synthesis of the
gibberellin family of natural products. The dimethoxy ketal
moiety not only enables the IMDA and skeletal rearrangement
but also serves as a convenient blocking group; the olefin and
carbonyl groups will enable the application of various oxidation
protocols, providing access to higher order gibberellins, such as
GA3. Additionally, this will allow for the generation of
unnatural gibberellins that may possess interesting biological
properties.
In summary, we have implemented a concise synthesis of the
gibberellin core. The synthesis hinges on an oxidative
dearomatization/Diels−Alder cascade and Lewis acid catalyzed
skeletal rearrangement to forge the cyclopentane-fused [3.2.1]-
bicycle and provides efficient access to this biologically
important scaffold. This novel Lewis acid catalyzed rearrange-
ment is robust and may prove broadly useful for the synthesis
of complex natural products.
Chem. Soc. 1980, 102, 6628. (c) Hook, J. M.; Mander, L. N.; Urech, R.
J. Org. Chem. 1984, 49, 3250.
(7) Nagaoka, H.; Shimano, M.; Yamada, Y. Tetrahedron Lett. 1989,
3
(
1
(
0, 971.
8) Nuyttens, F.; Hoflack, J.; Appendino, G.; DeClercq, P. J. Synlett
995, 1995, 105.
9) (a) McGrath, N. A.; Bartlett, E. S.; Sittihan, S.; Njardarson, J. T.
Angew. Chem., Int. Ed. 2009, 48, 8543. (b) Morton, J. G. M.; Draghici,
C.; Kwon, L. D.; Njardarson, J. T. Org. Lett. 2009, 11, 4492.
(c) McGrath, N. A.; Binner, J. R.; Markopoulos, G.; Brichacek, M.;
Njardarson, J. T. Chem. Commun. 2011, 47, 209. (d) Yang, Q.;
Njardarson, J. T.; Draghici, C.; Li, F. Angew. Chem., Int. Ed. 2013, 52,
8
648. (e) Yang, Q.; Draghici, C.; Njardarson, J. T.; Li, F.; Smith, B. R.;
Das, P. Org. Biomol. Chem. 2014, 12, 330. (f) Smith, B. R.; Njardarson,
J. T. Org. Lett. 2017, 19, 5316.
(10) (a) Mori, K.; Nakahara, Y.; Matsui, M. Tetrahedron 1972, 28,
3217. (b) Yamada, Y.; Nagaoka, H.; Kimura, M. Synthesis 1977, 1977,
581. (c) Monti, S. A.; Chen, S. C.; Yang, Y. L.; Yuan, S. S.; Bourgeois,
O. P. J. Org. Chem. 1978, 43, 4062.
(
11) (a) Resek, J. E. J. Org. Chem. 2008, 73, 9792. (b) Laplace, D. R.;
Verbraeken, B.; Van Hecke, K.; Winne, J. M. Chem. - Eur. J. 2014, 20,
53. (c) Hosoya, T.; Sumi, K.; Doi, H.; Wakao, M.; Suzuki, M. Org.
Biomol. Chem. 2006, 4, 410.
12) (a) Zhang, Z.; Wang, J.; Li, J.; Yang, F.; Liu, G.; Tang, W.; He,
ASSOCIATED CONTENT
2
■
*
S
Supporting Information
(
W.; Fu, J. J.; Shen, Y. H.; Li, A.; Zhang, W. D. J. Am. Chem. Soc. 2017,
139, 5558. (b) Reza, A. F. G. M.; Higashibayashi, S.; Sakurai, H. Chem.
-
Asian J. 2009, 4, 1329. (c) Miyoshi, H.; Miki, M.; Hirano, S.; Shimizu,
A.; Kishi, R.; Fukuda, K.; Shiomi, D.; Sato, K.; Takui, T.; Hisaki, I.;
Nakano, M.; Tobe, Y. J. Org. Chem. 2017, 82, 1380. (d) Chandra, A.;
Johnston, J. N. Angew. Chem., Int. Ed. 2011, 50, 7641. (e) Drechsler,
U.; Hanack, M. Synlett 1998, 1998, 1207.
(13) (a) Ishihara, Y.; Baran, P. S. Synlett 2010, 2010, 1733. (b) Yuan,
C.; Jin, Y.; Wilde, N. C.; Baran, P. S. Angew. Chem., Int. Ed. 2016, 55,
CCDC 1821698 contains the supplementary crystallographic
Crystallographic Data Centre, 12 Union Road, Cambridge CB2
8
280.
1EZ, UK; fax: +44 1223 336033.
D
Org. Lett. XXXX, XXX, XXX−XXX