Catalytic Assymetric Aziridination of Enol Derivatives
8.4 Hz, 1 H), 7.03 (d, J ϭ 7.2 Hz, 1 H), 7.32 (d, J ϭ 7.9 Hz, 2 H), This work was supported by the Deutsche Forschungsgemeinschaft
FULL PAPER
7.50 (t, J ϭ 7.3 Hz, 1 H), 7.79 (t, J ϭ 6.2 Hz, 1 H), 7.81 (d, J ϭ
8.2 Hz, 2 H). – 13C NMR: δ ϭ 21.5, 54.8, 70.4, 118.0, 118.8, 121.9,
127.3, 127.5, 130.0, 135.1, 137.0, 144.2, 161.8, 188.6. – C16H15NO4S
(317.4): calcd. C 60.55, H 4.76, N 4.41, S 10.10; found C 60.46, H
4.70, N 4.35, S 9.95.
(Sonderforschungsbereich 347 “Selektive Reaktionen metallakti-
vierter Moleküle’’) and the Fonds der Chemischen Industrie. We
thank Prof. T. Patonay (Debrecen, Hungary) for generous gifts of
4-chromanone and 3-amino-4-chromanone hydrochloride.
[1]
Comprehensive Organic Chemistry, Vol. 5 (Exec. Eds.: D. Bar-
(Z)-3-Methyl-1-[(4-methylphenyl)sulfonyl]-2-phenyl-2-
aziridinol Acetate (4): To a solution of 176 mg (1.00 mmol) of enol
acetate 1aδ and 336 mg (900 µmol) of (N-tosylimino)iodobenzene
in 7 mL of MeCN at 0 °C was added a solution of 29.8 mg
(80.0 mmol) of [Cu(MeCN)4]PF6 in 3 mL of acetonitrile and the
mixture was stirred for ca. 2 h. It was then passed through a short
column of neutral Al2O3 (ca. 15 g) and eluted with 200 mL of
EtOAc. After removal of the solvent (30 °C, 10 mbar), purification
of the crude product by flash chromatography (PE/EtOAc, 8:1, ϩ
1% NEt3) yielded 234 mg (75%) of 4 as a colorless powder; m.p.
103–104 °C. – IR (KBr): ν˜ ϭ 3056 cm–1 (CH), 2979 (CH), 1753
(CϭO), 1679, 1595, 1451, 1334, 1209, 1160, 1089, 1001, 956, 816. –
1H NMR: δ ϭ 1.33 (d, J ϭ 5.8 Hz, 3 H), 2.03 (s, 3 H), 2.42 (s, 3
H), 3.79 (q, J ϭ 5.8 Hz, 1 H), 7.22–7.39 (m, 5 H), 7.53 (d, J ϭ
7.8 Hz, 2 H), 7.60 (d, J ϭ 8.3 Hz, 2 H). – 13C NMR: δ ϭ 12.6,
20.8, 21.5, 44.7, 79.1, 127.6, 127.9, 129.1, 129.4, 129.8, 131.5, 135.9,
144.3, 168.3. – C18H19NO4S (345.4): calcd. C 62.59, H 5.54, N 4.06,
S 9.28; found C 62.64, H 5.61, N 3.78, S 9.35.
ton, W. D. Ollis; Ed.: E. Haslam), Pergamon Press, Oxford,
1979, part 22, p. 21; part 23, p. 177; part 28, p. 867; part 30,
p. 1043.
[2]
ˆ
P. Besse, H. Veschambre, M. Dickman, R. Chenevert, J. Org.
Chem. 1994, 59, 8288–8291.
[3] [3a]
D. J. Ager, I. Prakash, D. R. Schaad, Chem. Rev. 1996, 96,
[3b]
[3c]
835–875. –
A. Studer, Synthesis 1996, 793–815. –
D.
Enders, J. Zhu, G. Raabe, Angew. Chem. 1996, 108, 1827–1829;
Angew. Chem. Int. Ed. Engl. 1996, 35, 1725–1728.
[4]
[4a] D. Tanner, Angew. Chem. 1994, 106, 625–646; Angew. Chem.
[4b]
Int. Ed. Engl. 1994, 33, 599–619. –
H. M. I. Osborn, J.
Sweeney, Tetrahedron: Asymmetry 1997, 8, 1693–1715.
[5] [5a]
S. Lociuro, L. Pellacani, P. A. Tardella, Tetrahedron Lett.
1983, 24, 593–596. – [5b] M. A. Loreto, L. Pellacani, P. A. Tard-
ella, Tetrahedron Lett. 1989, 30, 2975–2978. – [5c] S. Fioravanti,
M. A. Loreto, L. Pellacani, P. A. Tardella, Tetrahedron 1991,
47, 5877–5882.
[6]
D. Enders, Ch. Poiesz, R. Joseph, Tetrahedron: Asymmetry
1998, 9, 3709–3716.
[7] [7a]
J. Du Bois, J. Hong, E. M. Carreira, M. W. Day, J. Am.
[7b]
Chem. Soc. 1996, 118, 915–916. –
J. Du Bois, C. S. To-
mooka, J. Hong, E. M. Carreira, Acc. Chem. Res. 1997, 30,
Synthesis of Optically Active Amino Ketones 2a,b
[7c]
364–372. –
M. Komatsu, Angew. Chem. 1998, 110, 3596–3598; Angew.
S. Minakata, T. Ando, M. Nishimura, I. Ryu,
(S)-2-{[(4-Methylphenyl)sulfonyl]amino}propiophenone (2a): To a
solution of 893 mg (2.92 mmol) of (1R,2S)-[N-(4-methylphenyl)sul-
fonyl]norephedrine in 60 mL of acetone at 0 °C was added 0.95 mL
(2.09 mmol, 1.07 equiv.) of Jones’ reagent (2.2 ) and the reaction
mixture was stirred for 15 min. at room temp. After the addition
of 5 mL of ethanol, the mixture was diluted with 90 mL of distilled
water, extracted with ethyl ether (4 ϫ 50 mL), and the combined
extracts were dried over Na2SO4. After removal of the solvent (30
°C, 10 mbar), flash chromatography of the residue on silica gel
(hexane/EtOAc, 5:1) yielded 480 mg (54%) of a colorless powder
[7d]
Chem. Int. Ed. Engl. 1998, 37, 3392–3394. –
A. S. Jepsen,
M. Roberson, R. G. Hazell, K. A. Jørgensen, Chem. Commun.
1998, 1599–1600.
[8] [8a]
D. A. Evans, M. M. Faul, M. T. Bilodeau, J. Org. Chem.
[8b]
1991, 56, 6744–6746. –
D. A. Evans, M. M. Faul, M. T.
Bilodeau, B. A. Anderson, D. M. Barnes, J. Am. Chem. Soc.
[8c]
1993, 115, 5328–5329. –
D. A. Evans, M. M. Faul, M. T.
Bilodeau, J. Am. Chem. Soc. 1994, 116, 2742–2753.
[9] [9a]
Z. Li, K. R. Conser, E. N. Jacobsen,J. Am. Chem. Soc.
1993, 115, 5326–5327. – [9b] Z. Li, R. W. Quan, E. N. Jacobsen,
J. Am. Chem. Soc. 1995, 117, 5889–5890.
[10] [10a]
1
P. Müller, C. Baud, Y. Jacquier, M. Moran, I. Nägeli, J.
(ee Ͼ 98%). – H NMR: δ ϭ 1.37 (d, J ϭ 7.3 Hz, 3 H), 2.28 (s, 3
[10b]
Phys. Org. Chem. 1996, 9, 341–347. –
P. Müller, C. Baud,
H), 4.94 (quint., J ϭ 7.4 Hz, 1 H), 5.92 (d, J ϭ 7.9 Hz, 1 H, NH),
7.14 (d, J ϭ 8.7 Hz, 2 H), 7.41 (t, J ϭ 7.5 Hz, 2 H), 7.56 (t, J ϭ
7.3 Hz, 1 H), 7.69 (d, J ϭ 8.3 Hz, 2 H), 7.73 (d, J ϭ 7.2 Hz, 2 H). –
13C NMR: δ ϭ 20.9, 21.3, 53.2, 126.9, 128.4, 128.7, 129.5, 133.2,
134.0, 137.0, 143.4, 198.0. – [α]2D0 ϭ ϩ62.6 (CHCl3, c ϭ 1.00).
Y. Jacquier, M. Moran, I. Nägeli, Tetrahedron 1996, 52,
1543–1548.
[11] [11a]
W. Adam, R. T. Fell, V. R. Stegmann, C. R. Saha-Möller,
[11b]
J. Am. Chem. Soc. 1998, 120, 708–714.–
H. O. House, L.
J. Czuba, M. Gall, H. D. Olmstead, J. Org. Chem. 1969, 34,
[11c]
2324–2336. –
1983, 31, 2564–2573. –
N. Kawai, T. Shioiri, Chem. Pharm. Bull.
[11d]
H. J. Reich, J. M. Renga, I. L.
(S)-1-{[(4-Methylphenyl)sulfonyl]amino}-1-phenylacetone
Reich, J. Am. Chem. Soc. 1975, 97, 5434–5447.
T. Izumi, K. Fukaya, Bull. Chem. Soc. Jpn. 1993, 66, 1216–
1221.
(2b): To
a solution of 763 mg (2.50 mmol) of (S)-α-{[(4-
[12]
methylphenyl)sulfonyl]amino}benzeneacetic acid and 1.17 mL
(7.75 mmol) of TMEDA in 12.5 mL of THF at –78 °C was added
6.20 mL (7.75 mmol) of MeLi in Et2O (1.25 ). After stirring for
1 h at –78 °C, the reaction mixture was allowed to warm to room
temp. and stirred for a further 2 h. It was then cooled by means of
an ice-bath and poured into 75 mL of ice-cold 2 H3PO4 solution.
The resulting mixture was extracted with EtOAc (3 ϫ 20 mL), the
combined organic layers were washed with aq. NaHCO3 solution
(3 ϫ 20 mL) and brine (2 ϫ 20 mL), and dried over Na2SO4. Re-
moval of the solvent (30 °C, 10 mbar) and subsequent flash chro-
matography of the residue on silica gel (hexane/EtOAc, 4:1) yielded
75.0 mg (10%) of 2b as a colorless powder (ee 96%); m.p. 139–140
[13] [13a]
I. Hoppe, H. Hoffmann, I. Gärtner, Th. Krettek, D.
[13b]
Hoppe, Synthesis 1991, 1157–1162. –
K. Bowden, I. M.
Heilbron, E. R. H. Jones, B. C. L. Weedon, J. Chem. Soc. 1946,
39–45.
[14] [14a]
R. L. Shriner, R. C. Fuson, D. Y. Curtin, The Systematic
Identification of Organic Compounds, 5th ed., John Wiley Sons
Inc., New York, 1964, p. 266–267. – [14b] K. Burgess, L. T. Liu,
B. Pal, J. Org. Chem. 1993, 58, 4758–4763.
M. Palucki, N. S. Finney, P. J. Pospisil, M. L. Güler, T.
Ishida, E. N. Jacobsen, J. Am. Chem. Soc. 1998, 120, 948–
954. – [15b] J. March, Advanced Organic Chemistry, 4th ed., John
Wiley Sons Inc., New York, 1992, p. 215.
H. Takada, Y. Nishibayashi, K. Ohe, S. Uemura, C. P. Baird,
T. J. Sparey, P. C. Taylor, J. Org. Chem. 1997, 62, 6512–6518.
H. Fritschi, U. Leutenegger, A. Pfaltz, Helv. Chim. Acta 1988,
71, 1553–1565.
[15] [15a]
[16]
[17]
[18]
1
°C (ref.[18] 142 °C). – H NMR: δ ϭ 1.91 (s, 3 H), 2.26 (s, 3 H),
4.94 (d, J ϭ 5.0 Hz, 1 H), 5.98 (d, J ϭ 4.9 Hz, 1 H, NH), 6.99–
7.41 (m, 9 H). – 13C NMR: δ ϭ 21.1, 26.2, 66.3, 127.2, 128.4, 129.0,
135.4, 137.6, 143.6, 202.6. – [α]2D0 ϭ ϩ258.4 (CHCl3, c ϭ 1.00).
M. Regitz, Chem. Rev. 1965, 98, 1210–1224.
Received July 20, 1999
Acknowledgments
[O99443]
Eur. J. Org. Chem. 2000, 557Ϫ561
561