NJC
Paper
S. Lee, J. Lee, B. Choi, P. M. S. D. Cal, S. Kang, J.-M. Kee,
G. J. L. Bernardes, J.-U. Rohde, W. Choe and S. Y. Hong, J. Am.
Chem. Soc., 2017, 139, 12121–12124.
reused catalyst revealed an extremely small amount of decrease in
the metal loading. Furthermore, XRD analysis (ESI†) also showed
almost no change in the diffraction pattern and the intensity of the
peaks. These facts validate the strong anchoring of the NHC
complex onto the silica surface.
ˇ
´
7 J. Barluenga, C. Valdes, G. Beltran, M. Escribano and
F. Aznar, Angew. Chem., Int. Ed., 2006, 45, 6893–6896.
8 (a) J. A. Marshall and C. A. Sehon, J. Org. Chem., 1995, 60,
5966–5968; (b) S. J. Hayes, D. W. Knight, M. D. Menzies,
M. O’Halloran and W.-F. Tan, Tetrahedron Lett., 2007, 48,
7709–7712.
Conclusion
In summary, an efficient, highly effective, low-loading silica-
supported Ag–NHC catalyst was developed for the synthesis of
triazoles through AgAAC. The method offered significant
advantages over the existing methods employing silver catalysts
in terms of broad substrate scope, easy handling, and most
importantly ultra-low loading of silver metal, which could be
reused for up to 5 cycles without losing its catalytic efficiency
appreciably. Furthermore, water as a reaction medium and
quinine as an additive contributed to the cleaner chemistry
and greener credential of this protocol.
9 (a) J. A. Marshall and K. W. Hinkle, J. Org. Chem., 1997, 62,
5989–5995; (b) D. G. Dunford and D. W. Knight, Tetrahedron
Lett., 2016, 57, 2746–2748.
10 A. K. Clarke, M. J. James, P. O’Brien, R. J. K. Taylor and
W. P. Unsworth, Angew. Chem., Int. Ed., 2016, 55, 13798–13802.
11 (a) J. McNulty, K. Keskar and R. Vemula, Chem. – Eur. J.,
2011, 17, 14727–14730; (b) J. McNulty and K. Keskar, Eur.
J. Org. Chem., 2012, 5462–5470.
12 E. Boz and N. S. Tuzun, Dalton Trans., 2016, 45, 5752–5764.
´
˜
13 (a) A. I. Ortega-Arizmendi, E. Aldeco-Perez and E. Cuevas-Yanez,
Sci. World, 2013, 1–8; (b) A. A. Ali, M. Chetia, B. Saikia, P. J. Saikia
and D. Sarma, Tetrahedron Lett., 2015, 56, 5892–5895.
14 N. Salam, A. Sinha, A. Singha Roy, P. Mondal, N. R. Jana and
S. M. Islam, RSC Adv., 2014, 4, 10001–10012.
Conflicts of interest
There are no conflicts of interest to declare.
15 P. Basua, P. Bhanjab, N. Salamc, T. K. Deya, A. Bhaumikb,
D. Dasc and S. M. Islama, Mol. Catal., 2017, 439, 31–40.
16 S. Das, P. Mondal, S. Ghosh, B. Satpati, S. Deka, S. M. Islam
and T. Bala, New J. Chem., 2018, 42, 7314–7325.
17 J. Sultana, N. D. Khupse, S. Chakrabarti, P. Chattopadhyay
and D. Sarma, Tetrahedron Lett., 2019, 60, 1117–1121.
18 A. J. Arduengo, R. L. Harlow and M. Kline, J. Am. Chem. Soc.,
1991, 113, 361–363.
Acknowledgements
DS is thankful to DST, New Delhi, India for a research grant
[No. EMR/2016/002345]. AG thanks DST, New Delhi for Research
Fellowship. The financial assistance of DST-FIST and UGC-SAP
programme to the Department of Chemistry, Dibrugarh University
is also gratefully acknowledged.
19 N-Heterocyclic carbenes in transition metal catalysis. Topics in
organometallic chemistry, ed. F. Glorius, Springer, Berlin,
2007, p. 21.
References
1 P. Thirumurugan, D. Matosiuk and K. Jozwiak, Chem. Rev., 20 (a) J. Cheng, L. Wang, P. Wang and L. Deng, Chem. Rev.,
2013, 113, 4905–4979.
2 (a) C. W. Tornøe, C. Christensen and M. Meldal, J. Org.
2018, 118, 9930–9987; (b) Y. Wang and G. H. Robinson,
Inorg. Chem., 2014, 53, 11815–11832.
Chem., 2002, 67(9), 3057–3064; (b) V. V. Rostovtsev, 21 (a) M. R. Fructos, P. de Fremont, S. P. Nolan, M. M. Diaz-
L. G. Green, V. V. Fokin and K. B. Sharpless, Angew. Chem.,
Int. Ed., 2002, 41, 2596–2599.
3 (a) L. Zhang, X. Chen, P. Xue, H. H. Y. Sun, I. D. Williams,
K. B. Sharpless, V. V. Fokin and G. Jia, J. Am. Chem. Soc., 2005,
Requejo and P. J. Perez, Organometallics, 2006, 25, 2237–2241;
(b) H. Kaur, Z. F. Kaur, E. D. Stevens and S. P. Nolan, Organo-
metallics, 2004, 23, 1157–1160; (c) S. Diez-Gonzalez, A. Correa,
L. Cavallo and S. P. Nolan, Chem. – Eur. J., 2006, 12, 7558–7564.
127, 15998–15999; (b) L. K. Rasmussen, B. C. Boren and 22 (a) H. M. J. Wang and I. J. B. Lin, Organometallics, 1998, 17,
V. V. Fokin, Org. Lett., 2007, 9, 5337–5339; (c) B. C. Boren,
S. Narayan, L. K. Rasmussen, L. Zhang, H. Zhao, Z. Lin, G. Jia
and V. V. Fokin, J. Am. Chem. Soc., 2008, 130, 8923–8930.
4 (a) X. Meng, X. Xu, T. Gao and B. Chen, Eur. J. Org. Chem.,
2010, 5409–5414; (b) M. A. Morozova, M. S. Yusubov,
B. Kratochvil, V. Eigner, A. A. Bondarev, A. Yoshimura, A. Saito,
972–975; (b) C. K. Lee, K. M. Lee and I. J. B. Lin, Organometallics,
2002, 21, 10–12.
23 (a) S. Mohammed, A. K. Padala, B. A. Dar, B. Singh, B. Sreedhar,
R. A. Vishwakarma and S. B. Bharate, Tetrahedron, 2012, 68,
8156–8162; (b) T. Miaoa and L. Wang, Synthesis, 2008, 363–368;
(c) L. Wan and C. Cai, Catal. Lett., 2012, 142, 1134–1140.
V. V. Zhdankin, M. E. Trusova and P. S. Postnikov, Org. Chem. 24 M. Wang, P. Li and L. Wang, Eur. J. Org. Chem., 2008, 2255–2261.
Front., 2017, 4, 978–985.
25 S. Brunauer, L. S. Deming, W. E. Deming and E. Teller,
5 E. Rasolofonjatovo, S. Theeramunkong, A. Bouriaud,
J. Am. Chem. Soc., 1940, 62, 1723–1732.
S. Kolodych, M. Chaumontet and F. Taran, Org. Lett., 2013, 26 (a) H. Xu, Y. Xu, H. Li, J. Xia, J. Xiong, S. Yin, C. Huang and
15, 4698–4701.
H. Wan, Dalton Trans., 2012, 41, 3387–3394; (b) L. Kong,
Z. Jiang, H. H. Lai, R. J. Nicholls, T. Xiao, M. O. Jones and
P. P. Edwards, J. Catal., 2012, 293, 116–125.
6 (a) H. S. P. Rao and G. Chakibanda, RSC Adv., 2014, 4,
46040–46048; (b) W. G. Kim, M. E. Kang, J. B. Lee, M. H. Jeon,
This journal is ©The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019 New J. Chem., 2019, 43, 19331--19337 | 19337