A.B. Pinar et al. / Journal of Catalysis 263 (2009) 258–265
265
bility of acid sites to the relatively bulky reagent molecules like
Supplementary material
pyridine, m-xylene and butene in these samples is strongly de-
pendent on the specific combination of structure directing agents
used in the synthesis. It is interesting to observe that the pres-
ence of sodium ions in the gel is sufficient to enormously increase
the acid site accessibility, as can be seen by comparing the results
corresponding to the sample synthesised in fluoride medium using
pyrrolidine as SDA (FER-pyrr) with that obtained at high pH in the
presence of the same SDA (FER1). On the other hand, significant
differences in the accessibility of the acid sites among the catalysts
prepared in fluoride medium have been evidenced. In this case
the negative charge associated to the aluminium atoms can only
be neutralised by the bulky organic SDAs, as there are no sodium
cations present in the synthesis gel. Therefore, these differences
in the accessibility of the acid centres are an indication that the
specific organic SDA employed in each case have a marked effect
on the location pattern of Al atoms associated to these acid sites
in the framework. In other words, we have found evidences that
strongly suggest that the Al location in the ferrierite framework
can be influenced in a decisive manner by the structure directing
agents present in the gel, including sodium among them.
Regarding the effect of the different SDA, the results we present
suggest that this effect would be dependent upon the particular
template molecules used in the synthesis, although we can not yet
offer a clear explanation as to why specific combination of tem-
plate molecules behave so differently. As compared with the small
sodium cation, which would be able to occupy a variety of differ-
ent positions, the bulkiness of the organic SDAs would fix them in
some specific configuration inside of either the main channel or
the cage, making the Al sitting much more specific as well.
The online version of this article contains additional supple-
mentary material.
References
ˇ
[1] B. Wichterlová, J. Deˇdecˇek, Z. Sobalík, J. Cejka, Stud. Surf. Sci. Catal. 135 (2001)
344.
[2] J. Deˇdecˇek, D. Kaucký, B. Wichterlová, O. Gonsiorová, Phys. Chem. Chem. Phys. 4
(2002) 5406.
ˇ
[3] V. Gábová, J. Deˇdecˇek, J. Cejka, Chem. Commun. (2003) 1196.
ˇ
[4] J. Deˇdecˇek, J. Cejka, M. Oberlinger, S. Ernst, Stud. Surf. Sci. Catal. 142 (2002) 23.
[6] P.A. Vaughan, Acta Crystallogr. 21 (1966) 983.
[7] R.E. Morris, S.J. Weigel, N.J. Henson, L.M. Bull, M.T. Janicke, B.F. Chmelka, A.K.
Cheetham, J. Am. Chem. Soc. 116 (1994) 11849.
[8] M.P. Attfield, S.J. Weigel, F. Taulelle, A.K. Cheetham, J. Mater. Chem. 10 (2000)
2109.
[9] Y. Yokomori, J. Wachsmuth, K. Nishi, Microporous Mater. 50 (2001) 137.
[10] A.B. Pinar, L. Gómez-Hortigüela, J. Pérez-Pariente, Chem. Mater. 19 (2007) 5617.
[11] A.B. Pinar, R. García, J. Pérez-Pariente, Collect. Czech. Chem. Commun. 72
(2007) 666.
[12] A.B. Pinar, J. Pérez-Pariente, L. Gómez-Hortigüela, WO2008116958-A1.
[13] D.F. Shantz, R.F. Lobo, C. Fild, H. Koller, Stud. Surf. Sci. Catal. 130 (2000) 845.
[14] K. Frolich, R. Bulánek, P. Nachtigall, in: Proc. of the 40th Symp. on Catalysis,
Prague, 2008, p. 40.
[15] C.J. Plank, E.J. Rosinski, M.K. Rubin, US Patent 4 016 245 (1977).
[16] A. Kuperman, S. Nadimi, S. Oliver, G.A. Ozin, J.M. Garces, M.M. Olken, Na-
ture 365 (1993) 239.
[17] W.J. Smith, J. Dewing, J. Dwyer, J. Chem. Soc. Faraday Trans. 1 85 (1989) 3623.
[18] J.L. Guth, H. Kessler, R. Wey, Stud. Surf. Catal. Sci. 28 (1986) 121.
[19] L.A. Villaescusa, M.A. Camblor, Recent Res. Devel. Chem. 1 (2003) 93.
[20] A.B. Pinar, et al., manuscript in preparation.
[21] W. Fan, S. Shirato, F. Gao, M. Ogura, T. Okubo, Microporous Mesoporous
Mater. 89 (2006) 227.
4. Conclusions
[22] S. Hayashi, K. Suzuki, K. Hayamizu, J. Chem. Soc. Faraday Trans. 1 85 (1989)
2973.
[23] L. Schreyeck, P. Caullet, J.C. Mougenel, J.L. Guth, B. Marler, Microporous Mater. 6
(1996) 259.
[24] T. Ikeda, Y. Akiyama, Y. Oumi, A. Kawai, F. Mizukami, Angew. Chem. Int. Ed. 43
(2004) 4892.
[25] A. Burton, R.J. Accardi, R.F. Lobo, Chem. Mater. 12 (2000) 2936.
[26] D.L. Dorset, G.J. Kennedy, J. Phys. Chem. B 108 (2004) 15216.
[27] R. Millini, L.C. Carluccio, A. Carati, G. Bellussi, C. Perego, G. Cruciani, S. Zanardi,
Microporous Mesoporous Mater. 74 (2004) 59.
[28] B. Wichterlová, Z. Tvaru˚ žková, Z. Sobalík, P. Sarv, Microporous Mesoporous
Mater. 24 (1998) 223.
[29] Y.S. Jin, A. Auroux, J.C. Vedrine, Appl. Catal. 37 (1988) 1.
[30] M. Trombetta, G. Busca, S. Rossini, V. Piccoli, U. Cornaro, A. Guercio, R. Catani,
R.J. Willey, J. Catal. 179 (1998) 581.
[31] V.L. Zholobenko, E.R. House, Catal. Lett. 89 (2003) 35.
[32] B. Onida, et al., manuscript in preparation.
Ferrierite crystals having the same Al content, 2.2 Al/u.c., have
been synthesised from sodium-free gels in fluoride media by using
some specific combinations of structure directing agents, namely
tetramethylammonium (TMA), pyrrolidine and benzylmethylpyrro-
lidinium (bmp). It has been found that the distribution of bridging
hydroxyl groups between the ferrierite cage accessible through 8-
MR windows and the 10-MR channel varies according to the spe-
cific combination of templates used in the synthesis. Considering
also the reference ferrierite sample synthesised in alkaline medium
+
from a gel containing both Na and pyrrolidine, the accessibility
◦
of pyridine to the Brönsted acid sites at 150 C decreases in the
order Na/pyrrolidine > TMA/bmp > TMA/pyrrolidine > pyrrolidine.
A good correlation between acid sites accessibility and catalytic ac-
tivity in the isomerisation of m-xylene and conversion of n-butene
has been found. Hence, this synthesis strategy of ferrierite crystals
allows to gain an effective control on acid sites distribution in the
zeolite framework, and might eventually be extended to other suit-
able zeolite materials by a rational choice of appropriate structure
directing agents.
[33] A. Martucci, A. Alberti, G. Cruciani, P. Radaelli, P. Ciambelli, M. Rapacciulo, Mi-
croporous Mesoporous Mater. 30 (1999) 95.
[34] V.L. Zholobenko, D.B. Lukyanov, J. Dwyer, W.J. Smith, J. Phys. Chem.
(1998) 2715.
B 102
[35] J.A.Z. Pieterse, S. Veefkind-Reyes, K. Seshan, L. Domokos, J.A. Lercher, J. Catal.
187 (1999) 518.
ˇ
[36] P. Sarv, B. Wichterlová, J. Cejka, J. Phys. Chem. B 102 (1998) 1372.
[37] J. Martens, J. Pérez-Pariente, E. Sastre, A. Corma, P.A. Jacobs, Appl. Catal. 45
(1988) 85.
[38] A. Corma, E. Sastre, J. Catal. 129 (1991) 177.
ˇ
[39] G. Mirth, J. Cejka, J.A. Lercher, J. Catal. 139 (1993) 24.
Acknowledgments
ˇ
[40] B. Wichterlová, N. Žilkova, E. Uvanova, J. Cejka, P. Sarv, C. Paganini, J.A. Lercher,
Appl. Catal. A 182 (1999) 297.
[41] L. Domokos, L. Lefferts, K. Seshan, J.A. Lercher, J. Mol. Catal. A Chem. 162 (2000)
147.
[42] J. Cejka, B. Wichterlová, P. Sarv, Appl. Catal. A 179 (1999) 217.
[43] C. Márquez-Alvarez, A.B. Pinar, R. García, M. Grande-Casas, J. Pérez-Pariente,
Top. Catal., in press.
A.B. Pinar acknowledges the Spanish MICINN (former Ministry
of Education) for a PhD grant. The authors thank Dr. T. Blasco for
collecting the NMR spectra. This work has been financially sup-
ported by the MICINN (project CTQ2006-06282).
ˇ