Page 5 of 7
Dalton Transactions
Please do not adjust margins
Journal Name
ARTICLE
regime and more energy is needed to release adsorbed CO2).29
The magnitude of the isosteric heat of adsorption indicates the
affinity of the pore surface toward CO2, which in turn plays a
crucial role in determining the adsorptive selectivity and the
energy required to release the CO2 molecules during
regeneration.30 This high magnitude of isosteric heat of
adsorption of CO2 in 2 is probably attributed to the high density
of free nucleophilic tetrazole nitrogen atoms on the pore
surfaces, which makes 2 interact with CO2 strongly.31
3
4
DOI: 10.1039/C9DT04068D
Chem. Rev., 2019, 388, 172; H. Wang and J. Li, Acc. Chem. Res., 2019,
52, 1968.
R. Adam, M. Mon, R. Greco, L. H. G. Kalinke, A. Vidal-Moya, A.
Fernandez, R. E. P. Winpenny, A. Doménech-Carbó, A. Leyva-Pérez, D.
Armentano, E. Pardo, and J. Ferrando-Soria, J. Am. Chem. Soc., 2019,
141(26), 10350; X. Zhang , Z.-Y. Huang , M. Ferrandon, D.-L. Yang, L.
Robison, P. Li, T.-C. Wang, M. Delferro and O. K. Farha, Nat Catal, 2018,
1, 356; T. Liu, P. Li, N. Yao, G.-Z. Cheng, S.-L. Chen, W. Luo and Y.-D.
Yin, Angew. Chem. Int. Ed., 2019, 58, 4679; M. Gharib, L. Esrafili, A.
Morsali and P. Retailleau, Dalton Trans., 2019, 48, 8803; L. Li, R.-B.
Lin, R. Krishna, H. Li, S. Xiang, H. Wu, J. Li, W. Zhou and B. Chen,
Science, 2018, 362, 443; A. Pulido, L. J. Chen, T. Kaczorowski, D.
Holden, M. A. Little, S.-Y. Chong, B. J. Slater, D. P. McMahon, B.
Bonillo, C. J. Stackhouse, A. Stephenson, C. M. Kane, R. Clowes, T.
Hasell, A. I. Cooper and G. M. Day, Nature, 2017, 543, 657.
Recent reviews: M.-L. Ding, R.-W. Flaig, H.-L. Jiang and O. M. Yaghi,
Chem. Soc. Rev., 2019, 48, 2783; R. Li, W. Zhang and K. Zhou, Adv.
Mater., 2018, 30, 1705512; H.-G. Zhang, J.-Z. Li, Q. Tan, L.-L. Lu, Z.-B.
Wang and G. Wu, Chem. Eur. J., 2018, 24, 18137.
F. Guo, S.-Z. Yang, Y. Liu, P. Wang, J.-E. Huang and W.-Y. Sun, ACS
Catal., 2019, 9, 8464; B. An, Z. Li, Y. Song, J.-Z. Zhang, L.-Z. Zeng, C.
Wang and W.-B. Lin, Nat. Catal., 2019, 2, 709; Y.-P. Wei, Y. Liu, F. Guo,
X.-Y. Dao and W.-Y. Sun, Dalton Trans., 2019, 48, 8221.
M. J. Lashaki, S. Khiavi and A. Sayari, Chem. Soc. Rev., 2019, 48, 3320;
A. V. Desaia, S. Sharma, S. Let and S. K. Ghos, Coordin. Chem. Rev.,
2019, 395, 146; S. Roland, J. M. Suarez and M. Sollogoub, Chem. Eur.
J., 2018, 24, 12464.
Conclusions
We have synthesized three tetrazole-based MOFs. 1 contains
highly positively charged Cu12 clusters and the largest 3D
mesopores (32 Å) in the reported MOFs based on tri-topic
tetrazole ligand. 2 and 3 are a pair of isomers originated from
the versatile coordination mode of a tetrazole-based ligand. We
managed to control the isomerization between 2 and 3 and
make phase-pure samples for both 2 and 3 directly. More
interestingly, 2 represents the most porous MOFs based on
pmtz ligand, and showed high selectivity for adsorbing CO2 with
low-coverage isosteric heat of adsorption up to 31 kJ·mol-1,
which should be attributed to the very high density of free
nucleophilic tetrazole nitrogen atoms on the pore surfaces.
Further work on studying isomerization effect of MOFs and
building stable porous frameworks with tetrazole or other
nitrogen-containing heterocyclic groups-based molecules is
ongoing.
5
6
7
8
9
S. Yan, D. Zhu, Z.-Y. Zhang, H. Li, G.-J. Chen and B. Liu, Appl. Energy,
2019, 248, 104; A. Gogia and S. K. Mandal, Dalton Trans., 2019, 48,
2388.
B. Ugale, S. Kumar, T. J. Dhilip Kumar and C. M. Nagaraja, Inorg. Chem.,
2019, 58, 3925; Y. Rachuri, J. F. Kurisingal, R. K. Chitumalla, S. Vuppala,
Y.-J. Gu, J. Jang, Y.-S. Choe, E. Suresh and D. W. Park, Inorg. Chem.,
2019, 58, 11389.
10 X. Zhang, J. Sun, G.-F. Wei, Z.-P. Liu, H.-M. Yang, K.-M. Wang and H.-
H. Fei, Angew. Chem. Int. Ed., 2019, 58, 2844; X. Zhang, Y.-L. Jiang and
H.-H. Fei, Chem. Commun., 2019, 55, 11928.
11 H. Benaissa, M. Wolff, K. Robeyns, G. Knör, K. V. Hecke, N. Campagnol,
J. Fransaer and Y. Garcia, Cryst. Growth Des., 2019, 19, 5292; Y. Sun,
F. Wang and J. Zhang, Inorg. Chem., 2019, 58, 4076.
12 Y. Ye, Z. Zhang, L. Chen, S. Chen, Q. Lin, F. Wei, Z. Zhang and S. Xiang,
Inorg. Chem., 2019, 58, 7754; N. Li, Z. Chang, H. Huang, R. Feng, W.-
W. He, M. Zhang, D. G. Madden, M. J. Zaworotko and X.-H. Bu, Small,
Trans., 2018, 47, 5298; A. Tǎbǎcaru, C. Pettinari and S. Galli, Coordin.
Chem. Rev., 2018, 372, 1.
13 Y.-X. Ye, H. Zhang, L.-J. Chen, S.-M. Chen, Q.-J. Lin, F.-F. Wei, Z.-J.
Zhang and S.-C. Xiang, Inorg. Chem., 2019, 58, 7754; L.-Q. Ji, J. Yang,
Z.-Y. Zhang, Y. Qian, Z. Su, M. Han and H.-K. Liu, Cryst. Growth Des.,
2019, 19, 2991; H. A. Hamzah, T. S. Crickmore, D. Rixson and A. D.
Burrows, Dalton Trans., 2018, 47, 14491.
Conflicts of interest
The authors declare no competing financial interests.
Acknowledgements
We thank China Postdoctoral Science Foundation
(2018M640478), Nanjing Tech University, National Natural
Science Foundation of China (No. 21771101), Fundamental
Studies of Perovskite Solar Cells (2015CB932200) and Primary
Research & Development Plan of Jiangsu Province (BE2016770)
for funding.
Notes and references
14 A.-M. Xie, M.-P. Cao, Y.-Y. Liu, L.-D. Feng, X.-Y. Hu and W. Dong, Eur.
J. Org. Chem., 2014, 436.
15 M. O'Keeffe, M. A. Peskov, S. J. Ramsden and O. M. Yaghi, Acc. Chem.
Res., 2008, 41, 1782.
1
Recent reviews: M. Y. Masoomi, A. Morsali, A. Dhakshinamoorthy and
H. Garcia, Angew. Chem. Int. Ed., 2019, 58, 2; G. Yilmaz, S. B. Peh, D.
Zhao and G.-W. Ho, Adv. Sci., 2019, 6, 1901129; N. Hosono and S.
Kitagawa, Acc. Chem. Res., 2018, 51, 2437.
16 Y. Kim, T. Yang, G. Yun, M. B. Ghasemian, J. Koo, E. Lee, S. J. Cho and
K. Kim, Angew. Chem. Int. Ed., 2015, 54, 13273; T.-H. Chen, I. Popov,
W. Kaveevivitchai, Y.-C. Chuang, Y.-S. Chen, A. J. Jacobson and O. Š.
Miljanić, Angew. Chem. Int. Ed., 2015, 54, 13902; S.-T. Zheng, T. Wu,
C. S. Chou, A. Fuhr, P.-Y. Feng and X.-H. Bu, J. Am. Chem. Soc., 2012,
134, 4517.
17 B.-X. Dong, S.-Y. Zhang, W.-L. Liu, Y.-C. Wu, J. Ge, L. Song and Y.-L. Teng,
Chem. Commun., 2015, 51, 5691; C. K. Brozek, A. F. Cozzolino, S. J.
Teat, Y.-S. Chen and M. Dinca, Chem. Mater., 2015, 25, 2998.
18 A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7.
2
J. A. Zárate, E. Sánchez-González, D. R. Williams, E. González-Zamora,
V. Martis, A. Martínez, J. Balmaseda, G. Maurin and I. A. Ibarra, J.
Mater. Chem. A, 2019, 7, 15580; J.-F. Lyu, X. Zhang, K. I. Otake, X.-J.
Wang, P. Li, Z.-Y. Li, Z.-J. Chen, Y.-Y. Zhang, M. C. Wasson, Y. Yang, P.
Bai, X.-H. Guo, T. Islamoglu and O. K. Farha, Chem. Sci., 2019, 10, 1186;
K. Shen, L. Zhang, X. D. Chen, L.-M. Liu, D.-L. Zhang, Y. Han, J.-Y. Chen,
J.-L. Long, R. Luque, Y.-W. Li and B.-L. Chen, Science, 2018, 359, 206;
C. Avci, I. Imaz, A. Carné-Sánchez, J. A. Pariente, N. Tasios, J. Pérez-
Carvajal, M. I. Alonso, A. Blanco, M. Dijkstra, C. López and D. Maspoch,
Nat. Chem., 2018, 10, 78.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins