K. C. Majumdar et al. / Tetrahedron Letters 51 (2010) 2297–2300
2299
O
S
O
O
S
O
Path a
S
S
OH
S
7
6
O
H O
2
+
S
reflux
CHO
3
2
O
O
O
O
Path b
S
S
S
S
4
5
Scheme 3. Probable mechanism of domino-Knoevenagel-hetero-Diels–Alder reaction.
1
spectroscopic data. The characteristic peaks for 4a–g in the H NMR
(New Delhi) for providing Bruker NMR Spectrometer (400 MHz) and
Perkin–Elmer CHN Analyzer under its FIST programme.
spectra are an AB quartet for the –OCH
and 4.94 ppm followed closely by a singlet for the SCH@ proton at
d = 5.99–6.57 ppm. The corresponding carbon signal for the OCH
2
protons between d = 4.62
2
,
References and notes
13
SCH@ and C@O groups of compound 4a in the C spectra appear
at 69.7, 109.4, 177.1 ppm, respectively.16
1.
(a) Ellis, G. P.; Lockhart, I. M.; Meeder-Nycz, D.; Schweizer, E. E. In Chromenes,
Chromanones and Chromones; Ellis, G. P., Ed.; John Wiley and Sons, 1997; (b)
Feuer, G. In Progress in Medicinal Chemistry; Ellis, G. P., West, G. B., Eds.; North-
Holland Publishing Co.: New York, 1974; (c) Kostova, I. Curr. Med. Chem. Anti-
Cancer Agents 2005, 5, 29; (d) Wenkert, E.; Buckwalter, B. L. J. Am. Chem. Soc.
It is remarkable that the domino-Knoevenagel-hetero-Diels–Al-
der reaction of unactivated alkynes occurs without the help of a Le-
wis acid/ catalyst. In this particular case, the reactivity may
perhaps be explained by considering the presence of soft sulfur
atom in the diene moiety of the substrates. The sulfur atom may
offer itself a reactive centre and is more polarizable than the other
heteroatoms. Moreover, there are empty d-orbitals in the sulfur
1972, 94, 4367; (e) Deana, A. A. J. Med. Chem. 1983, 26, 580.
2
.
.
(a) Vink, P. Neth. Appl.. 6, 411, 477 (Cl, Co7d), April 9, 1965, Swiss Appl. Oct. 8,
1963 and July 29, 1964; 7pp: Chem. Abstr. 1965, 63, 13265.; (b) El-Subbagh, H.
I.; El-Emam, A. A.; El-Ashmawy, M. B.; Shehata, I. A. Arch. Pharm. Res. 1990, 13,
24. and references cited therein.
3
(a) Korkina, G. L.; Afanas’ev, I. B. In Sies, H., Ed.; Adv. Pharmacol. 1997, 38, 151.;
(b) Buslig, B. S.. In Flavonoids in Living Systems: Advances in Experimental
Medicine and Biology; Manthy, J. A., Ed.; Plenum: New York, 1998; Vol. 439, (c)
Negwer, M. Organic Chemical Drugs and their Synonyms, 7th ed.; Akademie:
Stuttgart, 1994; (d) Groundwater, P. W.; Solomon, K. R. H.; Drewe, J. A.;
Munawar, M. A.. In Progress in Medicinal Chemistry; Ellis, G. P., Luscombe, D. K.,
Eds.; Elsevier: Amsterdam, 1996; Vol. 33, p 233.
atom having a matching symmetry with that of the
p-orbitals of
the acetylene moiety for interaction.12
A probable mechanism for the domino-Knoevenagel-hetero-
Diels–Alder reaction is depicted in Scheme 3. The first step is the
Knoevenagel condensation between 4-hydroxy dithiocoumarin 3
and O-propargylated salicylaldehyde 2 to give an alkene interme-
diate, which has not been isolated. The alkene heterodiene inter-
mediate may arrange in two different ways (intermediates 5 and
4.
(a) Majumdar, K. C.; Khan, A. T.; Saha, S. Synlett 1991, 595; (b) Majumdar, K. C.;
Bandyopadhyay, A.; Ghosh, S. K. Synth. Commun. 2004, 34, 2159; (c) Majumdar,
K. C.; Bandyopadhyay, A. Monatsh. für Chem. 2004, 135, 581; (d) Majumdar, K.
C.; Saha, S.; Khan, A. T. Indian J. Chem. 1994, 33B, 216.
5
.
.
(a) Majumdar, K. C.; Khan, A. T.; Saha, S. Synth. Commun. 1992, 22, 901; (b)
Majumdar, K. C.; Bandyopadhyay, A.; Biswas, A. Tetrahedron 2003, 59, 5289.
(a) Majumdar, K. C.; Muhuri, S. Synthesis 2006, 2725; (b) Majumdar, K. C.;
Kundu, U. K.; Ghosh, S. K. Org. Lett. 2002, 4, 2629.
6
), one of which may undergo hetero-Diels–Alder reaction to give
two different hetero-Diels–Alder products (products 4 and 7) that
is, through ‘path a’ or ‘path b’. Here only products 4 were isolated
which shows that the reaction proceeds via ‘path b’ and it may be
attributed to the presence of the sulfur atom. High polarizability
and softness of sulfur atom make the HOMO–LUMO energy gap
smaller when thiocarbonyl group of thioester acts as heterodiene
6
7
8
.
.
Majumdar, K. C.; Taher, A.; Ray, K. Tetrahedron Lett. 2009, 50, 3889.
(a) Yadav, J. S.; Reddy, B. V. S.; Sadashiv, K.; Padmavani, B. Adv. Synth. Catal.
2
004, 346, 607; (b) Yamanaka, M.; Nishida, A.; Nakagana, M. Org. Lett. 2000, 2,
159; (c) Deligny, M.; Carreaux, F.; T oupet, L.; Carboni, B. Adv. Synth. Catal. 2003,
45, 1215; (d) Berkessel, A.; Erturk, E.; Laporte, C. Adv. Synth. Catal. 2006, 348,
3
2
4
23; (e) Baudelle, R.; Melnyk, P.; Deprez, B.; Tartar, A. Tetrahedron 1998, 54,
125.
than that of the carbonyl group of
and thus the reaction proceeds via ‘path b’ to give the products 4.
In conclusion, we have developed mild, efficient and
a,b-unsaturated ketone system
9. (a) Tietze, L. F. Chem. Rev. 1996, 96, 115; (b) Tietze, L. F.; Brasche, G.; Gericke, K.
Domino Reactions in Organic Synthesis; Wiley-VCH, 2006; (c) Tietze, L. F.;
Rackelmann, N. Pure Appl. Chem. 2004, 76, 1967; (d) Tietze, L. F.; Ott, C.; Gerke,
K.; Buback, M. Angew. Chem., Int. Ed. Engl. 1993, 32, 1485.
a
catalyst-free protocol for the synthesis of benzopyran-annulated
thiopyranothiochromen-5(4H)-ones by domino-Knoevenagel-het-
ero-Diels–Alder reaction of unactivated terminal alkynes. The
advantage of the reaction is that water is used as a reaction media
which is benign, environment friendly and easily available in nature.
One interesting feature of this single step reaction is that C–C and
C–S bond formation occurs withoutthe help of any catalyst and base.
1
0. (a) Ramesh, E.; Raghunathan, R. Tetrahedron Lett. 2008, 49, 1812; (b) Lee, Y. R.;
Xia, L. Tetrahedron Lett. 2008, 49, 3283; (c) Jimenez-Alonso, S.; Chavez, H.;
Estevez-Braun, A.; Ravelo, A. G.; Feresin, G.; Tapia, A. Tetrahedron 2008, 64,
8938; (d) Jimenez-Alonso, S.; Estevez-Braun, A.; Ravelo, A. G.; Zarate, R.; Lopez,
M. Tetrahedron 2007, 63, 3066; (e) Manikandan, S.; Raghunathan, R.
Tetrahedron 2002, 58, 8957; (f) Yadav, J. S.; Reddy, B. V. S.; Narsimhaswamy,
D.; Lakshmi, P. N.; Narsimulu, K.; Srinivasulu, G.; Kunwar, A. C. Tetrahedron Lett.
2004, 45, 3493; (g) Lee, Y. R.; Kim, Y. M.; Kim, S. H. Tetrahedron 2009, 65, 101.
1
1
1. (a) Khoshkholgh, M. J.; Balalaie, S.; Bijanzadeh, H. R.; Gross, J. H. Synlett 2009,
55; (b) Khoshkholgh, M. J.; Balalaie, S.; Bijanzadeh, H. R.; Gross, J. H. ARKIVOC
Acknowledgments
2009, ix, 114; (c) Khoshkholgh, M. J.; Balalaie, S.; Bijanzadeh, H. R.; Rominger,
F.; Gross, J. H. Tetrahedron Lett. 2008, 49, 6965; (d) Khoshkholgh, M. J.; Balalaie,
S.; Gleiter, R.; Rominger, F. Tetrahedron Lett. 2008, 49, 10924; (e) Khoshkholgh,
M. J.; Lotfi, M.; Balalaie, S.; Rominger, F. Tetrahedron 2009, 65, 4228.
2. Majumdar, K. C.; Taher, A.; Ponra, S. Tetrahedron Lett. 2010, 51, 147.
We thank CSIR (New Delhi) and DST (New Delhi) for financial
assistance. Two of us (A.T. and S.P.) are grateful to CSIR (New Delhi)
for a Senior and a Junior Research Fellowship. We also thank the DST
13. Bashiardes, G.; Safir, I.; Barbot, F.; Laduranty, J. Tetrahedron Lett. 2004, 45, 1567.