Foundation of China for financial support (20472096, 203900502,
and 20272069).
References
1
For reviews, see: (a) D. Basavaiah, P. D. Rao and R. S. Hyma,
Tetrahedron, 1996, 52, 8001–8062; (b) S. E. Drewes and G. H. P. Roos,
Tetrahedron, 1988, 44, 4653–4670; (c) E. Ciganek, Org. React. (N. Y.),
1
997, 51, 201–350; (d) D. Basavaiah, A. J. Rao and T. Satyanarayana,
Chem. Rev., 2003, 103, 811–892; (e) Y. Iwabuchi and S. Hatakeyama,
J. Synth. Org. Chem., Jpn., 2002, 60, 2–14; (f) J.-X. Cai, Z.-H. Zhou and
C.-C. Tang, Huaxue Yanjiu, 2001, 12, 54–64.
(a) A. B. Baylis, M. E. D. Hillman, Ger. Pat. 2,155,113, 1972 (Chem.
Abstr., 1972, 77, 34174q); M. E. D. Hillman and A. B. Baylis, US Pat.
2
3
3
,743,669, 1973; (b) K. Morita, Z. Suzuki and H. Hirose, Bull. Chem.
Soc. Jpn., 1968, 41, 2815.
Scheme 1 A plausible mechanism for the Morita–Baylis–Hillman reac-
(a) A. G. M. Barrett, A. S. Cook and A. Kamimura, Chem. Commun.,
1998, 2533–2534; (b) N. T. McDougal and S. E. Schaus, J. Am.
Chem. Soc., 2003, 125, 12094–12095; (c) Y. Iwabuchi, M. Nakatani,
N. Yokoyama and S. Hatakeyama, J. Am. Chem. Soc., 1999, 121, 10219–
3
tion of aldehydes with MVK co-catalyzed by PPh and phenol (Brønsted
acid).
1
0220; (d) K.-S. Yang, W.-D. Lee, J.-F. Pan and K.-M. Chen, J. Org.
p-nitrophenol, no signal of the free PPh
3
was observed, indicating
Chem., 2003, 68, 915–919; (e) J. E. Imbriglio, M. M. Vasbinder and S. J.
Miller, Org. Lett., 2003, 5, 3741–3743; J. E. Imbriglio, M. M. Vasbinder
and S. J. Miller, Acc. Chem. Res., 2004, 37, 601–610; (f) For others, see: P.
Langer, Angew. Chem., Int. Ed., 2000, 39, 3049–3051; (g) S. Kawahara,
A. Nakano, T. Esumi, Y. Iwabuchi and S. Hatakeyama, Org. Lett.,
that the interaction of phenolic hydroxy groups with oxygen atom
of MVK (hydrogen bonding) does indeed exist, which strongly
stabilizes the phosphonium enolate and drives the equilibrium
largely in this direction. This is the key reason why the co-catalyzed
system of phosphine Lewis bases and p-nitrophenol was more
effective. When the phosphonium enolate was formed in situ, and
2
003, 5, 3103–3105; (h) P. R. Krishna, V. Kannan and P. V. N. Reddy,
Adv. Synth. Catal., 2004, 346, 603–606; (i) Y. Sohtome, A. Tanatani, Y.
Hashimoto and K. Nagasawa, Tetrahedron Lett., 2004, 45, 5589–5592;
(
j) K.-S. Yang and K.-M. Chen, Org. Lett., 2000, 2, 729–731; (k) M. Shi
p-chlorobenzaldehyde (molar ratio 5 : 1 to PPh
the solution, we found that a new signal appeared at +24.00 ppm
in the P NMR spectrum (in CDCl , referenced to 85% H PO
of the mixture, along with the signal at +29.96 ppm, in a 1 : 8 ratio
Fig. 5, ESI). According to the generally accepted mechanism,
this new signal might be the second phosphonium intermediate
resulting from the aldol reaction, which did not decompose too
quickly.
3
) was added into
and L. H. Chen, Chem. Commun., 2003, 1310–1311; (l) M. Shi, L. H.
Chen and C.-Q. Li, J. Am. Chem. Soc., 2005, 127, 3790–3800; (m) S.
Luo, X. Mi, H. Xu, P. G. Wang and J.-P. Cheng, J. Org. Chem., 2004, 69,
3
1
3
3
4
)
8
413–8422; (n) S. Luo, P. G. Wang and J.-P. Cheng, J. Org. Chem., 2004,
69, 555–558; (o) X. Mi, S. Luo and J.-P. Cheng, J. Org. Chem., 2005,
0, 2338–2341; (p) K. Matsui, S. Takizawa and H. Sasai, J. Am. Chem.
7
(
Soc., 2005, 127, 3680–3681; (q) D. Balan and H. Adolfsson, Tetrahedron
Lett., 2003, 44, 2521–2524.
4
(a) K. E. Price, S. J. Broadwater, H. M. Jung and D. T. McQuade,
Org. Lett., 2005, 7, 147–150; (b) V. K. Aggarwal, S. Y. Fulford and
G. C. Lloyd-Jones, Angew. Chem., Int. Ed., 2005, 44, 1706–1708; (c) B.
Lesch, J. Tor a¨ ng, S. Vanderheiden and S. Br a¨ se, Adv. Synth. Catal., 2005,
In conclusion, we have found that the Lewis base promoter
triphenylphosphine can promote the traditional Morita–Baylis–
Hillman reaction of aldehydes with methyl vinyl ketone (MVK), in
the presence of a catalytic amount of p-nitrophenol. The phenolic
hydroxy group in p-nitrophenol played a key role in achieving
high yields in this reaction. The co-catalyzed mechanism has been
3
47, 555–562; (d) K. E. Price, S. J. Broadwater, B. J. Walker and D. T.
McQuade, J. Org. Chem., 2005, 70, 3980–3987.
5 (a) M. Shi, J.-K. Jiang and Y.-S. Feng, Org. Lett., 2000, 2, 2397–2400;
b) M. Shi and Y.-S. Feng, J. Org. Chem., 2001, 66, 406–411; (c) M.
Shi, J.-K. Jiang, S.-C. Cui and Y.-S. Feng, J. Chem. Soc., Perkin Trans.
., 2001, 390–393; (d) M. Shi and J.-K. Jiang, Tetrahedron, 2000, 56,
4793–4797; (e) M. Shi, C.-Q. Li and J.-K. Jiang, Chem. Commun., 2001,
(
1
3
1
investigated by P NMR spectroscopy. Efforts are underway to
elucidate the mechanistic details of this reaction and to disclose
the scope and limitations of this reaction.
8
1
33–834; (f) M. Shi, J.-K. Jiang and C.-Q. Li, Tetrahedron Lett., 2002, 43,
27–130; (g) M. Shi and W. Zhang, Tetrahedron, 2005, 61, 11887–11894.
6
7
8
P. Buskens, J. Klankermayer and W. Leitner, J. Am. Chem. Soc., 2005,
1
27, 16762–16763.
Lange’s handbook of chemistry (15th edn, version II), ed. J. A. Demn,
McGraw-Hill, New York, vol. V, 1973, pp. 13–39.
Acknowledgements
31
The P NMR signal of alkyl(triphenyl)phosphonium ions is in the range
20 to +30 ppm, see: (a) M. M. Kayser, K. L. Hatt and D. L. Hopper,
Can. J. Chem., 1991, 69, 1929–1939; (b) CRC Handbook of Phosphorus-
+
We thank the State Key Project of Basic Research (Project 973)
(
No. G2000048007), Shanghai Municipal Committee of Science
3
1 Nuclear Magnetic Resonance Data, ed. J. C. Tebby, CRC Press Inc.,
and Technology (04JC14083), and the National Natural Science
Boca Raton, Florida, 1990, pp. 215–217.
1
470 | Org. Biomol. Chem., 2006, 4, 1468–1470
This journal is © The Royal Society of Chemistry 2006