Chemistry - A European Journal
10.1002/chem.201806197
FULL PAPER
1H,15N TROSY resonances were indexed with IDs from 1 to 118 due
0048) and CBH-EUR-GS (ANR-17-EURE-0003). Finally, the
authors would like to thanks Dr. Yoann M. Chabre for useful
discussions.
to lack of protein backbone resonance assignment. Based on this
reference spectrum, resonance IDs were transferred to the spectrum with
compound in order to compare changes in presence of a compound. In
case of ambiguities caused by strongly overlapping or disappearing peaks
among reference spectra, resonance IDs were not transferred. Chemical
shift perturbation (CSP) were calculated according to:
Keywords: organic synthesis • fluorinated glycoside • isothermal
titration calorimetry • LecA • TROSY NMR
ͥ
ͦ
ͦ
∆
ꢀ Ɣ ǯ ʞ∆ꢀ ƍ ʚꢂ∆ꢀ
ꢃ
ʛ ʟ
ꢁ
ͦ
[
1]
2]
a) S. M. Ametamey, M. Honer, P. A. Schubiger, Chem. Rev. 2008, 108,
with ∆δ
i
as the difference in chemical shift (in ppm) and α an empirical
1
501–1516; b) S. Preshlock, M. Tredwell, G. Gouverneur Chem. Rev.
016, 116, 719–766; c) H. H. Coenen, P. H. Elsinga, R. Iwata, M. R.
[
45]
weighing factor of 0.14 for all amino acid backbone resonances. The
threshold value was set to 0.015 ppm based on four independent
measurements of reference spectra. In addition to CSPs, peaks that
reduced at least 20% in normalized signal intensity compared to reference
spectrum were used as indicators for carbohydrate binding.
2
Kilbourn, M. R. A. Pillai, M. G. R. Rajan, H. N. Wagner, J. J. Zaknum,
Nucl. Med. Biol. 2010, 37, 727–740; d) D. A. Mankoff, F. Dehdashti, A.
F. Shields, Neoplasia 2000, 2, 71−88.
[
a) M. Namchuk, C. Braun, J. D. McCarter, S. G. Withers, Fluorinated
sugars as probes of glycosidase mechanism. In ACS Symposium Series,
Ed.: Ojima, I.; McCarthy, J.; Welch, J. T. 1996, 639, 279−293; b) S. J.
Williams, S. G. Withers, Carbohydr. Res. 2000, 327, 27−46; c) S. A.
Allam, H. H. Jensen, B. Vijayakrishnan, J. A. Garnett, E. Leon, Y. Liu, D.
C. Anthony, N. R. Sibson, T. Feizi, S. Matthews, B. G. Davis,
ChemBioChem 2009, 10, 2522−2529.
1
9
F NMR measurements
The measurement using ligand-observed 19F NMR was performed
to validate binding of fluorinated galactopyranosides to LecA. Briefly, a
spectrum of 50 µM compound alone and with 100 µM LecA in TBS buffer
(
2 2
25 mM Tris, 150 mM NaCl, pH 7.8, 10 mM CaCl , 100 µM TFA, 10% D O)
was recorded at 310 K in Norell S-3-800-7 3mm tubes (Norell) on a Bruker
Ascend 700 MHz spectrometer (Bruker, Billerica, MA, USA) equipped with
a 5mm TCI700 CryoProbe . All spectra were normalized to internal
[3]
[4]
H. Lis, N. Sharon, Chem. Rev. 1998, 98, 637−674.
A. Varki, R. Cummings, J. Esko, H. Freeze, G. Hart, J. Marth, Essentials
of Glycobiology, Eds.; Cold Spring Harbor Laboratory Press, 1999.
T. K. Dam, F. C. Brewer, Chem. Rev. 2002, 102, 387−429.
TM
reference TFA at −75.6 ppm and analysed for changes in peak intensity or
[5]
[6]
19
chemical shift. Compounds were defined to bind LecA in F NMR
experiment when changes in peak intensity above 20% or a chemical shift
of 0.025 ppm occurred in presence of LecA.
Subcellular Biochemistry, Volume 32: α-Gal and anti-Gal: α-1,3-
galactosyltransferase, α-Gal epitopes, and the natural anti-Gal antibody,
Eds. U. Galili, J. L. Avila. Kluwer Academic, New York. 1999, 394pp.
a) R. Lotan, β-Galactoside-binding vertebrate lectins: synthesis,
molecular biology, function. In Glycoconjugates Eds.: H. J. Allen, E. C.
Kisailus. 1992, 635−671; b) J. T. Powell, F. L. Harrison, Am. J. Physiol.
[7]
Isothermal titration calorimetry
Recombinant lyophilized LecA was dissolved in buffer (20 mM
TRIS-HCl, 100 µM CaCl , 100 mM NaCl, pH 7.5) and degassed. Protein
2
concentration (50 to 300 µM) was checked by measurement of optical
density by using a theoretical molar extinction coefficient of 28000.
Galactose derivatives were dissolved directly into the same buffer,
degassed, and placed in the injection syringe (concentrations varying from
1
991, 261, L236−L239; c) K. Kasai, Adv. Lectin Res. 1990, 3, 10−35; d)
M. Caron, D. Bladier, R. Joubert, Int. J. Biochem. 1990, 22, 1379−1385;
e) A. M. Wu, S. Sugii, Adv. Exp. Med. Biol. 1988, 228, 505−263.
a) A. Imberty, Y. M. Chabre, R. Roy, Chem. Eur. J. 2008, 14, 7490−7499;
b) L. Bhattacharyya, F. C. Brewer, Eur. J. Biochem. 1988, 176, 207−212.
O. Hindsgaul, T. Norberg, J. Le Pendu, R. U. Lemieux, Carbohydr. Res.
[
[
[
8]
9]
1
(
.3 to 1.5 mM). ITC was performed using a ITC-200 microcalorimeter
MicroCal Inc). LecA was placed into the 200 µM sample cell, at 25 °C.
Titration was performed with 2 µL injections of carbohydrate ligands every
20 s. Data were fitted using the “one-site model” using MicroCal Origin 7
1
982, 109, 109−142.
10] T. Diercks, A. S. Infantino, L. Unione, J. Jiménez-Barbero, S. Oscarson,
H.-J. Gabius, Chem. Eur. J. 2018, 24, 15761−15765.
1
[11] M. Hoffmann, J. Rychlewski, Int. J. Quant. Chem. 2002, 89, 419−427.
[12] M. Reindl, A. Hoffmann-Röder, Curr. Top. Chem. 2014, 14, 840−854.
[13] a) H. J. Bohm, D. Banner, S. Bendels, M. Kansy, B. Kuhn, K. Muller, U.
Obst-Sander, M. Stahl, ChemBioChem, 2004, 5, 637–643; b) S. Purser,
P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 2008, 37,
software according to standard procedures. Fitted data yielded the
stoichiometry (n), the association constant (Ka), and the enthalpy of
binding (∆H). Other thermodynamic parameters (i.e., changes in free
energy ∆G and entropy ∆S) were calculated from the equation ∆G = ∆H-
T∆S = −RTlnKa in which T is the absolute temperature and R = 8.314
3
20–330; c) E. P. Gillis, K. J. Eastman, M. D. Hill, D. J. Donnelly, N. A.
-1
-1
J.mol .K . Two or three independent titrations were performed for each
ligand tested.
Meanwell, J. Med. Chem. 2015, 58, 8315–8359.
[
14] a) V. Denavit, D. Lainé, J. St-Gelais, P. A. Johnson, D. Giguère, Nat.
Commun. 2018, 9, 4721; b) D. Lainé, V. Denavit, D. Giguère, J. Org.
Chem. 2017, 82, 4986–4992; c) V. Denavit, D. Lainé, G. Le Heiget, D.
Giguère, Fluorine-containing carbohydrates: synthesis of 6-deoxy-6-
Acknowledgements
fluoro-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose.
In
Carbohydrate chemistry: Proven synthetic methods, volume 4, Eds.: C.
Vogel, P. V. Murphy, Ed., WILEY-VCH, 2017, Chapter 30, pp. 241–246.
15] a) D. Giguère, S. Sato, C. St-Pierre, S. Sirois, R. Roy, Bioorg. Med. Chem.
Lett. 2006, 16, 1668–1672; b) J. Rodrigue, G. Ganne, B. Blanchard, C.
Saucier, D. Giguère, T. C. Shiao, A. Varrot, A. Imberty, R. Roy, Org.
Biomol. Chem. 2013, 11, 6906–6918; c) J. C. Diaz Arribas, A. G. Herrero,
M. Martin-Lomas, F. J. Canada, S. He, S. G. Withers, Eur. J. Biochem.
This work was supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC), the Fonds
de Recherche du Québec – Nature et Technologies, CHU de
Québec-Université Laval Research Center and the Université
Laval. D. L. thanks the Fonds de Recherche du Québec – Nature
et Technologies for a postgraduate fellowship. We thank Pierre
Audet for NMR assistance (Université Laval) and Thierry Marris
for crystallographic assistance (Université de Montréal). This
work has been partially supported by Glyco@Alps project (ANR-
[
2
000, 267, 6996–7005.
[16] a) S. G. Withers, M. D. Percival, I. P. Street, Carbohydr. Res. 1989, 187,
4
5
3–66; b) B. P. Rempel, S. G. Withers, Aust. J. Chem. 2009, 62, 590–
99; c) J.-S. Zhu, N. E. McCormick, S. C. Timmons, D. L. Jakeman, J.
15-IDEX-02), Labex ARCANE, GLYCOMIME (ANR-17-CE11-
Org. Chem. 2016, 81, 8816–8825.
This article is protected by copyright. All rights reserved.