UPDATES
graphy, see: Transition-metal-mediated aromatic ring
construction, (Ed.: K. Tanaka), Wiley, Hoboken, 2013.
Experimental Section
[3] For selected references, see: a) T. Shibata, Y. Arai, Y.
Tahara, Org. Lett. 2005, 7, 4955; b) S. Brun, L. Garcia,
I. Gonzµlez, A. Torrent, A. Dachs, A. Pla-Quintana, T.
Parella, A. Roglans, Chem. Commun. 2008, 4339; c) A.
Geny, S. Gaudrel, F. Slowniski, M. Amatore, G. Chour-
aqui, M. Malacria, C. Aubert, V. Gandon, Adv. Synth.
Catal. 2009, 351, 271; d) A. Dachs, A. Pla-Quintana, T.
Parella, M. Solà, A. Roglans, Chem. Eur. J. 2011, 17,
14493; e) T. León, M. Parera, A. Roglans, A. Riera, X.
Verdaguer, Angew. Chem. 2012, 124, 7057; Angew.
Chem. Int. Ed. 2012, 51, 6951; f) K. Masutomi, N. Sa-
kiyama, K. Noguchi, K. Tanaka, Angew. Chem. 2012,
124, 13208; Angew. Chem. Int. Ed. 2012, 51, 13031.
[4] For selected references, see: a) K. Tsuchikama, Y.
Kuwata, T. Shibata, J. Am. Chem. Soc. 2006, 128,
13686; b) T. Shibata, A. Kawachi, M. Ogawa, Y.
Kuwata, K. Tsuchikama, K. Endo, Tetrahedron 2007,
63, 12853; c) K. Tanaka, M. Takahashi, H. Imase, T.
Osaka, K. Noguchi, M. Hirano, Tetrahedron 2008, 64,
6289; d) M. Kobayashi, T. Suda, K. Noguchi, K.
Tanaka, Angew. Chem. 2011, 123, 1702; Angew. Chem.
Int. Ed. 2011, 50, 1664.
General Procedure for the Rh-Catalyzed [2+2+2]
Cycloaddition Reactions
A stirred mixture of [Rh(COD)2]BF4 (4.1 mg, 0.01 mmol,
0.1 equiv.) and (R)-BINAP (6.3 mg, 0.01 mmol, 0.1 equiv.) in
dichloromethane (2 mL) was degassed under nitrogen. Hy-
drogen gas was introduced to the catalyst solution and the
mixture was stirred for 30 min. The resulting mixture was
concentrated to dryness. Ethanol (3 mL) was then added
and the solution was stirred under a nitrogen atmosphere.
The solution was introduced to a 10-mL screw-capped vial.
To this solution Morita–Baylis–Hillman adduct 2 or 6
(0.15 mmol, 1.5 equiv.) and diyne 1 (0.1 mmol, 1 equiv.)
were added under a nitrogen atmosphere. The vial was then
placed inside the cavity of the microwave synthesizer. The
reaction mixture was heated at 608C for 10 min (TLC moni-
toring). The solvent was then evaporated and the residue
was purified by column chromatography on silica gel to give
compounds 3 or 7.
[5] For selected reviews, see: a) D. Basavaiah, P. D. Rao,
R. S. Hyma, Tetrahedron 1996, 52, 8001; b) D. Basa-
vaiah, A. J. Rao, T. Satyanarayana, Chem. Rev. 2003,
103, 811; c) V. Singh, S. Batra, Tetrahedron 2008, 64,
4511; d) D. Basavaiah, B. S. Reddy, S. S. Badsara,
Chem. Rev. 2010, 110, 5447; e) T.-Y. Liu, M. Xie, Y.-C.
Chen, Chem. Soc. Rev. 2012, 41, 4101; f) D. Basavaiah,
G. Veeraraghavaiah, Chem. Soc. Rev. 2012, 41, 68.
[6] For selected references on the stereocontrolled reaction
of M-B-H adducts, see: a) T. Gendrineau, N. Demoulin,
L. Navarre, J.-P. Genet, S. Darses, Chem. Eur. J. 2009,
15, 4710; b) Y. Wang, X. Feng, H. Du, Org. Lett. 2011,
13, 4954. For a reference to the kinetic resolution of
tertiary propargylic alcohols by a [2+2+2] cycloaddi-
tion, see: c) K. Tanaka, T. Osaka, K. Noguchi, M.
Hirano, Org. Lett. 2007, 9, 1307.
[7] CCDC 1429936 (compound 3a) contains the supple-
mentary crystallographic data for this paper. These
data can be obtained free of charge from The Cam-
bridge Crystallographic Data Centre via www.ccdc.
[8] The low ee obtained can be justified on the grounds of
a competing enantiocomplementary isomerization pro-
cess of the M-B-H adduct. When the isomerization pro-
cess is suppressed a higher ee is obtained (vide infra).
[9] K. Ren, L. Zhang, B. Hu, M. Zhao, Y. Tu, X. Xie, T. Y.
Zhang, Z. Zhang, ChemCatChem 2013, 5, 1317.
Acknowledgements
Financial support from the Spanish Ministry of Education
and Science (MINECO) (Projects No.: CTQ2014-54306-P,
CTQ2012-32436 and a RyC contract to A. L.) and the DIUE
of the Generalitat de Catalunya (Project No.: 2014SGR931)
are acknowledged. Thanks are due to Generalitat de Catalu-
nya for predoctoral grants to M.F. and M.P.
References
[1] For selected reviews, see: a) E. J. Corey, A. Guzman-
Perez, Angew. Chem. 1998, 110, 2092; Angew. Chem.
Int. Ed. 1998, 37, 388; b) I. Denissova, L. Barriault, Tet-
rahedron 2003, 59, 10105; c) C. J. Douglas, L. E. Over-
man, Proc. Natl. Acad. Sci. USA 2004, 101, 5363;
d) B. M. Trost, C. Jiang, Synthesis 2006, 369; e) M.
Bella, T. Gasperi, Synthesis 2009, 1583; f) B. Wang,
Y. Q. Tu, Acc. Chem. Res. 2011, 44, 1207; g) Y. Liu, S. J.
Han, W.-B. Liu, B. M. Stoltz, Acc. Chem. Res. 2015, 48,
740.
[2] For selected and recent reviews, see: a) A. Thakur, J.
Louie, Acc. Chem. Res. 2015, 48, 2354; b) M. Amatore,
C, Aubert, Eur. J. Org. Chem. 2015, 265; c) Y. Satoh,
Y. Obora, Eur. J. Org. Chem. 2015, 5041; d) D. L. J.
Broere, E. Ruijter, Synthesis 2012, 2639; e) S. Okamo-
to, Heterocycles 2012, 85, 1579; f) Y. Shibata, K.
Tanaka, Synthesis 2012, 323; g) N. Weding, M. Hapke,
Chem. Soc. Rev. 2011, 40, 4525; h) R. Hua, M. V. A.
Abrenica, P. Wang, Curr. Org. Chem. 2011, 15, 712;
i) M. R. Shaaban, R. El-Sayed, A. H. M. Elwahy, Tetra-
hedron 2011, 67, 6095; j) G. Domínguez, J. PØrez-Cas-
tells, Chem. Soc. Rev. 2011, 40, 3430; k) A. Pla-Quinta-
na, A. Roglans, Molecules 2010, 15, 9230. l) For a mono-
[10] The reaction shows substrate inhibition when a high
excess of M-B-H adduct is used. Our interpretation is
that this inhibition is probably due to coordination of
multiple M-B-H adducts to the rhodium complex.
[11] T. Fukuyama, C.-K. Jow, M. Cheung, Tetrahedron Lett.
1995, 36, 6373.
[12] a) A. L. Jones, J. K. Snyder, Org. Lett. 2010, 12, 1592;
b) M. Shibuya, T. Sudoh, T. Kawamura, Y. Yamamoto,
Org. Biomol. Chem. 2015, 13, 5862.
Adv. Synth. Catal. 2016, 358, 1848 – 1853
1853
ꢀ 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim