Journal of the American Chemical Society
Page 4 of 13
‡ These authors contributed equally to this work.
1
2
10 (a) Zhao, Y.; Weix, D. J. J. Am. Chem. Soc. 2014, 136, 48-51; (b) Zhao,
3
4
5
6
7
8
9
Y.; Weix, D. J. J. Am. Chem. Soc. 2015, 137, 3237–3240.
Present Addresses
11 Weix, D. J. Acc. Chem. Res. 2015, 48, 1767-1775.
†Department of Chemistry, Princeton University, Princeton, NJ
08544
12
NHP esters are reported to have E1/2 -1.56 to -1.66 V vs. Ag/Ag+ (in
MeCN, references 7a and 12, converted using reference 15) and
(bpy)NiBr2 is reported to have a two-electron E1/2 of -1.52 V vs. Ag/Ag+
(in DMF, reference 14).
ACKNOWLEDGMENT
13
Lackner, G. L.; Quasdorf, K. W.; Pratsch, G.; Overman, L. E. J. Org.
The authors gratefully acknowledge funding from the NIH
NIGMS (R01 GM097243). LKGA acknowledges funding from
the University of Rochester (Elon Huntington Hooker Fellow-
ship). KAJ acknowledges funding from an NSF GRFP award
(DGE-1419118). DJW is a Camille Dreyfus Teacher-Scholar.
Additional funding from Novartis, Pfizer, and Boehringer Ingel-
heim is also gratefully acknowledged. Analytical data were ob-
tained from the CENTC Elemental Analysis Facility at the Uni-
versity of Rochester, funded by NSF CHE-0650456. Prof. Larry
Overman is thanked for suggesting that we look at NHP esters
for cross-electrophile coupling.
Chem. 2015, 80, 6012-6024.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
14
Mikhaylov, D.; Gryaznova, T.; Dudkina, Y.; Khrizanphorov, M.; Laty-
pov, S.; Kataeva, O.; Vicic, D. A.; Sinyashin, O. G.; Budnikova, Y. Dalton
Trans. 2012, 41, 165-172.
15
Pavlishchuk, V. V.; Addison, A. W. Inorg. Chim. Acta 2000, 298, 97-
102.
16
Cornella, J.; Edwards, J. T.; Qin, T.; Kawamura, S.; Wang, J.; Pan, C.-
M.; Gianatassio, R.; Schmidt, M. A.; Eastgate, M. D.; Baran, P. S. J. Am.
Chem. Soc. 2016, 138, 2174-2177.
17
The NHS ester of acetic acid has an E1/2 of -2.05 V while the NHP es-
ter of acetic acid has an E1/2 of -1.04 V vs. Ag/Ag+ in methanol. See: Horner,
L.; Jordan, M. Justus Liebigs Ann. Chem. 1978, 1978, 1518-1525.
18
A variety of ligands (2,2’-biphenyl, 1,10-phenanthroline, 4,4’-
REFERENCES
dimethoxy-2,2’-biphenyl, bathophenanthroline) and nickel sources
(NiBr2(diglyme), NiBr2•3H2O) were effective.
19
NHP esters synthesized with DIC according to the method of Over-
man7 consistently performed better than esters synthesized with other
g
coupling agents (DCC, EDC). Spiking experiments with possible contami-
nants have not yet revealed the reason for this discrepancy.
1
(a) Frisch, A. C.; Beller, M. Angew. Chem., Int. Ed. 2005, 44, 674-688;
20
The coupling of alkyl halides with aryl halides has been scaled to mul-
(b) Rudolph, A.; Lautens, M. Angew. Chem., Int. Ed. 2009, 48, 2656-2670;
(c) Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417-1492;
(d) Manolikakes, G., 3.08 Coupling Reactions Between sp3 and sp2 Car-
bon Centers A2 - Knochel, Paul. In Comprehensive Organic Synthesis II
(Second Edition), Elsevier: Amsterdam, 2014; pp 392-464.
tigram scale using standard equipment: Everson, D. A.; George, D. T.;
Weix, D. J.; Buergler, J. F.; Wood, J. L. Org. Synth. 2013, 90, 200-214.
21
Reaction with 2-iodocumene failed to produce the cross-coupled
product, in contrast to reactions with alkyl iodides reported in reference 27.
22
2
Methyl tosylate was reported to methylate alkyl halides and acid chlo-
While 318,496 Ar-Br and 1,000,000 Ar-Cl are listed as commercially
rides, but not aryl halides: Liang, Z.; Xue, W.; Lin, K.; Gong, H. Org. Lett.
available in the eMolecules database (accessed via REAXYS 6/22/2015),
only 9,282 alkyl-Br and 24,746 alkyl-Cl are listed. In contrast, there are
83,315 alkanoic acids commercially available.
2014, 16, 5620-5623.
23
The coupling of β-iodoalanine or the corresponding organozinc rea-
3 Dieter, R. K. Tetrahedron 1999, 55, 4177-4236.
gent with aryl halides is another viable route to phenylalanine derivatives:
(a) Jackson, R. F. W.; Perez-Gonzalez, M.; Danheiser, R.L.; Crombie, A. L.
Org. Synth. 2005, 81, 77-88; (b) Lu, X.; Yi, J.; Zhang, Z.-Q.; Dai, J.-J.; Liu,
J.-H.; Xiao, B.; Fu, Y.; Liu, L. Chem.–Eur. J. 2014, 20, 15339-15343.
4
The decarbonylative coupling of alkanoic acid derivatives has more
precedent, see the following two examples and references therein: (a)
O'Brien, E. M.; Bercot, E. A.; Rovis, T. J. Am. Chem. Soc. 2003, 125, 10498-
10499; (b) Muto, K.; Yamaguchi, J.; Musaev, D. G.; Itami, K. Nat. Com-
mun. 2015, 6, 7508.
24
Even simple homophenylalanine is an important starting material for
the pharmaceutical industry. Ahmad, A. L.; Oh, P. C.; Abd Shukor, S. R.
5
Biotechnol. Adv. 2009, 27, 286-296.
(a) Zuo, Z.; Ahneman, D.; Chu, L.; Terrett, J.; Doyle, A. G.; MacMil-
25
Although the corresponding alkyl iodide is known, it has not been
lan, D. W. C. Science 2014, 345, 437-440; (b) Noble, A.; McCarver, S. J.;
MacMillan, D. W. C. J. Am. Chem. Soc. 2015, 137, 624-627; (c) Luo, J.;
Zhang, J. ACS Catalysis 2016, 873-877.
used in a cross-coupling: (a) Kenji, K.; Takahiro, M.; Seiichiro, I.; Akira,
O.; Michiko, Y.; Shigeo, M.; Mosbach, E. H.; Takahiko, H. Steroids 1992,
57, 193-198; (b) Banerjee, S.; Vidya, V. M.; Savyasachi, A. J.; Maitra, U. J.
Mater. Chem. 2011, 21, 14693-14705.
6 The coupling of a vinyl bromide with 3 equiv of cyclohexane carboxylic
acid (78% yield) and 5-phenylvaleric acid (11% yield) were reported in
reference 5b.
26
(a) Wotal, A. C.; Weix, D. J. Org. Lett. 2012, 14, 1476-1479; (b) Wu,
7
F.; Lu, W.; Qian, Q.; Ren, Q.; Gong, H. Org. Lett. 2012, 14, 3044-3047; (c)
Yin, H.; Zhao, C.; You, H.; Lin, K.; Gong, H. Chem. Commun. 2012, 48,
7034-7036; (d) Zhao, C.; Jia, X.; Wang, X.; Gong, H. J. Am. Chem. Soc.
2014, 136, 17645-17651; (e) Cherney, A. H.; Kadunce, N. T.; Reisman, S.
E. J. Am. Chem. Soc. 2013, 135, 7442-7445.
(a) Okada, K.; Okamoto, K.; Oda, M. J. Am. Chem. Soc. 1988, 110,
8736-8738; (b) Okada, K.; Okamoto, K.; Oda, M. J. Chem. Soc., Chem.
Commun. 1989, 1636-1637; (c) Okada, K.; Okamoto, K.; Morita, N.;
Okubo, K.; Oda, M. J. Am. Chem. Soc. 1991, 113, 9401-9402; (d) Okada,
K.; Okubo, K.; Morita, N.; Oda, M. Tetrahedron Lett. 1992, 33, 7377-7380;
(e) Okada, K.; Okubo, K.; Morita, N.; Oda, M. Chem. Lett. 1993, 22, 2021-
2024; (f) Schnermann, M. J.; Overman, L. E. Angew. Chem., Int. Ed. 2012,
51, 9576-9580; (g) Pratsch, G.; Lackner, G. L.; Overman, L. E. J. Org.
Chem. 2015, 80, 6025-6036.
27 Biswas, S.; Weix, D. J. J. Am. Chem. Soc. 2013, 135, 16192–16197.
28
For related studies suggesting similar mechanisms at play in different
reactions, see: (a) Schley, N. D.; Fu, G. C. J. Am. Chem. Soc. 2014, 136,
16588-16593; (b) Zhao, C.; Jia, X.; Wang, X.; Gong, H. J. Am. Chem. Soc.
2014, 136, 17645-17651.
8
(a) Everson, D. A.; Shrestha, R.; Weix, D. J. J. Am. Chem. Soc. 2010,
29
A reaction conducted with tetrakis(dimethylamino)ethylene in place
132, 920-921; (b) Everson, D. A.; Jones, B. A.; Weix, D. J. J. Am. Chem. Soc.
2012, 134, 6146-6159; (c) Wang, S.; Qian, Q.; Gong, H. Org. Lett. 2012,
14, 3352-3355.
of zinc did not turnover at rt. At elevated temperatures (40-60 °C), reac-
tions run with either TDAE or zinc both resulted in decomposition of the
NHP ester and no consumption of aryl iodide.
9
Ackerman, L. K. G.; Anka-Lufford, L. L.; Naodovic, M.; Weix, D. J.
Chem. Sci. 2015, 6, 1115-1119.
ACS Paragon Plus Environment